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ON ANTIPLATONISM AND ITS DOGMAS 

GUILLERMO E. ROSADO HADDOCK 

§1 Introduction 

Recent discussion in the philosophy of mathematics, especially in the 
Anglo-American world, occurs within the framework of some empiri
cist dogmas accepted as self evident truths by philosophers presumably 
p ropounding very different views. Thus, not o nly Quine and Putnam, 
Benacerraf and Kitcher, but even philosophers like the so-called Platon
ist Penelope Maddy, and the so-called no minalist, Hartry Fie ld, and many 
others accept in one way o r another the common core of 'evident 
truths ' that only serve the purpose of reassuring them of the 
'obviousness ' of their common prejudice, namely: the re jection of the 
existence of mathematical entities as conceived by the Plato nist. The ir 
nowadays commo n coin a rgumentatio ns, which we are going to con
sider in this paper, are devised in such a way that they all presuppose 
that the re are no abstract mathematical entities. 

One of the cornerstones of this common framework is the belie f 
that the only, o r at least the best, a rgument on behalf of Platonism in 
mathematics -thus, o n behalf of the belief in the existence of mathe
matical entities, like numbers or sets, fo reign to causal inte ractio n and 
immune to the vic issitudes of the physico-real world- is the so-called in
dispensability argument wielded by Quine and Putnam, according to 
which the successful application of mathematics in physical science 
guarantees the truth o f mathematical statements and (in Quine's case but 
not necessarily in Putnam's) the existence of mathematical entities. This 
argument was put forward by Quine in 'On what there is'1 and mo re 

1 'On what there is', in W. 0. Quine, From a Logical Point of View, 1953, pp. 1-
19. 
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emphatically by Putnam in 'What is Mathematical Truth?'2 , and is mo re 
or less accepted by most philosophers in the same tradition . 

Another cornerstone of the common framework is Paul Benacerraf's 
argumentation in 'What Numbers could not be'3, which supposedly es
tablishes, firstly, that numbers are not sets, and, secondly, that numbers 
are not objects. Strictly, we have here two different arguments with two 
different purposes. We shall call them 'Benacerrars first and second on
to logical arguments' (in that order) . A third and extremely impo rtant 
component of the common framework is Benacerrars epistemological 
argument against Platonism in mathematics, put forward in his paper 
'Mathematical Truth'4. Briefly, that argument te lls us that since we do no t 
have epistemological access of a causal nature to any abstract mathemati
cal entity, it is at least unnecessary to invoke those entities to explain our 
mathematical knowledge . A fourth -probably, less generally accepted
component of the common framework is Putnam's argument against 
realism in mathematics wielded in his paper 'Models and Reality'S. We 
will call that argument 'Putnam's skolemization argument', since it in
tends to extract epistemological consequences from the so-called 
'Skolem Paradox'. In what follows we shall see that all four compone nts 
of the common framework have a common 'foundation' in the above 
mentioned prejudice against the existence of abstract mathematical e nti
ties and our possible access to them. 

§2 Putnam's skolemization argument 

Let us consider first the most important features of Putnam's argu
mentation in 'Models and Reality'. At the beginning of the paper Putnam 
tells us that there are three different stands with respect to the problem 
of reference and truth, especially, reference and truth in mathematics, 
namely: (1) the Platonist, o r extremely realist stand, which he repeatedly 
stigmatizes as postulating the existence of 'non-natural' or 'mysterious' 

2 'What is Mathematical Truth?', in H. Putnam, Philosophical Papers, Vol. 1, 
1975, pp. 60-78. 

3 'What Numbers could not be', 1965, reprinted in P. Benacerraf and H. Putnam, eds., 
Philosophy of Mathematics, second edition, 1983, pp. 272-294. 

4 'Mathematical Truth', 1973, reprinted in P. Benacerraf and H. Putnam, eds., 
Philosophy of Mathematics, second edition, 1983, pp. 408-420. 

5 'Models and Reality', 1980, reprinted in P. Benacerraf and H. Putnam, eds., 
Philosophy of Mathematics, second edition , pp. 421-444. 
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mental powers that give us access in an 'irreductible' and 'unexplained ' 
way to mathematical entities and truths; (2) the verificationist, which 
substitutes the notion of verification for the classical notion of truth -
Putnam says 'verification or proof', although it is a consequence o f 
Godel's first incompleteness theorem that the notion of proof is, in 
general, no adequate surrogate for the notion of tn1th in classical mathe
matics-; and (3) the moderate realist stand, which he characterizes as 
aiming to preserve the centrality of the classical notions of truth and ref
erence without presupposing 'non-natural' mental powers. Although 
Putnam does not say it explicitly, when he speaks about moderate real
ism, he seems to have in mind the conception that he had propounded 
in 'What is Mathematical Truth?', according to w hich6 to be a realist 
means to maintain that (1) the statements of the theory under considera-

• 

tion (in this case, the whole of mathematics) are true o r are false, and that 
(2) it is something in the physico-real world that makes them true. Thus, 
such kind of realism does not need to commit itself to the existence of 
abstract mathematical entities, but only to the objectivity of mathemat
ics. Indeed, Putnam's realism in 'What is Mathematical Truth?' is related 
to the thesis that the indispensability argument is the only (or at least, 
the best) argument on behalf of realism in mathematics, since he main
tains7 that 'the criterion of truth in mathematics, as in physics, is the 
practical success of our ideas'. This sort of pragmatism concerning the 
notion of truth induces Putnam to follow in that paper in the footsteps 
of Quine and consider mathematical knowledge as corrigible, thus, as 
neither absolute nor immune to revision by experience. (Although it is 
not directly relevant fo r our present purposes, it should be mentioned 
that Quine's holism -which should not be confused with the much 
sounder Duhem thesis- is another dogma of Anglo-American analytic 
philosophy, and, ironically, one that was introduced in response to the 
two dogmas of pre-Quinean empiricism discussed by Quine in his duly 
famous paper.8 Contrary to the Quinean dogma, revisions in the physical 
and biological sciences never revise the mathematics -in the sense of 
considering the theorems of the mathematical apparatus used by the 
scientist as false- nor revise o ther scientific theories that are considered 

6 See pp. 67-68. 

7 See pp. 60-61. 
8 See W. 0 . Quine, 'Two Dogmas of Empiricism', in From a Logical Point of 

View, pp. 20-46. 
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completely isolated from the one under consideration. Such a revision 
would be considered unsound scientific practice.9) Continuing with Put
nam, he is going to argue that the so-called Skolem Paradox represen~s a 
very strong case against such a moderate realism, but leaves untouched 
both Platonism and verificationism. Let us now present the paradox to
gether with Putnam's assessment of it, which is an uncritical adoption o f 
Skolem's rendering. 

Let us consider a system of axioms fo r set theory, e.g., the system ZF 
of Zermelo-Fraenkel set theory. One of the theorems of ZF asserts that 
there are uncontably many sets. The Skolem Paradox occurs when we 
attempt to formalize ZF in a language -like those of first order- for which 
the Lowenheim-Skolem theorem is valid. Such a theorem says that any 
theory expressed in a (finite or countable) first order language -or in any 
language for which the theorem is valid- which has a model, also has a 
countable model. Thus, if we fo rmalize ZF in a first order language -as is 
usually done since Skolem-, ZF will have a model with a countable uni
verse, although one of its theorems establishes that there exist uncount
ably many setslO. 

Skolem's solution, adopted by Putnam and by most contempo rary 
logicians and philosophers of mathematics, is essentially the following. 
The existence (or non-existence) of a set is not an absolute feature of 
sets, but depends on the language under consideration. Hence, the exis
tence (or non-existence) of a set of o rdered pairs, as required to estab
lish a bijection between two given sets, is relative to the language under 
consideration . When we say that a model for a fo rmalization of ZF in a 
first o rder language is uncountable, we are not considering all the possi
ble bijections between the set of natural numbers and the universe of 
the model, but only those that exist inside the model. But the possibility 
is not excluded that outside the model there exists a set of o rdered pairs 
as required to establish the desired correspondence. Therefore, a mode l 
can be uncountable relative to the language under consideration, but 
countable as seen from outside the model. 

9 For a comparison of Quine's holism with Duhem's thesis, see Donald Gillies 
Philosophy of Science in the Twentieth Century, London 1993. 

10 For an authoritative exposition of Skolem's paradox -although with the same 
usual interpretation-, see H. D. Ebbinghaus, J. Flum and W. Thomas, Mathematical 
Logic, pp. 108 and specia lly 112-113. 
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Putnam argues11 that the Skolem Paradox establishes that no inter
esting theory (in the sense of 'first o rder theory') can, by itself, deter
mine its universe of objects up to isomorphism. Moreover, he adds12 
that Skolem's argument can be extended to show that if the theoretical 
constraints do not determine the universe of d iscourse, then possible 
additional restrictions of an operational nature cannot determine it ei
ther. Putnam even maintains13 that such an argument shows that a for
malization of a ll science, or of all our beliefs, could not eradicate undesir
able countable interpretations. 

We are not concerned here w ith an assessment of the negative im
pact of Skolem's paradox on moderate realism, but with the two con
ceptions of mathematical truth and reference that, accord ing to Putnam, 
remain unaffected by Skolem's paradox, namely, Platonism and verifica
tionism. Of special concern are the grounds that Putnam has for adopt
ing verificationism and rejecting Platonism. The reason given by Put
nam14 to reject the Platonist stand is that it invokes 'non-natural ' 
cognitive faculties, and this he considers 'epistemologically otiose and 
devoid of conviction as science'. It is interesting to observe that this 
same reason, namely, the rejection of cognitive faculties that he calls 
'non-natural' -'natural' for him would probably be only sense p e rce p
tion with some sort of causal link between the knower and the objects 
of knowledge-, makes him avoid a much less artificial rendering of the 
so-called Skolem Paradox, namely, that first o rder languages -and, in 
general, all those languages in which the Lowenheim-Skolem theorem is 
valid- are inadequate to formalize set theory, in an analogous, but not ex
actly identical way to that in which first order languages are inadequate to 
formalize arithmetic. In second order languages you can formalize both 
set theory and arithmetic much more adequately, since for such lan
guages neither the Lowenhe im-Skolem theorem nor any of its Tarskian 
variants are valid, and, hence, the Skolem Paradox cannot be construed 
for them. (Moreover, in the case of arithmetic, second order arithmetic 
is categorical, i.e., all its models are isomorphic, whereas first o rder 
arithmetic, thanks to the compactness theorem, has non-standard 
countable models, i.e., countable models not isomorphic to the stan-

11 Models and Reality, pp. 442-443. 

12 Ibid., p. 423. 

13 Ib id., p. 423. 

14 Ib id., p. 430. 
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dard model, as was shown precisely by Skolem.) Indeed, we should not 
fo rget that the Lowenheim-Skolem theorem and its Tarsklan variants are 
limitative results, which establish the non-categoricity of theories. Of 
course, second order languages have other probably undesirable prop
erties like non-compactness and semantic incompleteness. However, 
decidability, e.g., seems to be a desirable property, and propositional 
languages are decidable, whereas (full) first o rder languages are not. But 
that has no t hindered logicians to prefer first order languages to pro
positional ones because of their expressive power. This same ground 
could be given to prefer second order languages to first o rder ones. 
However, no matter how this rivalry between first and second o rder 
languages (and possibly others) is fmally decided, the fact is that 
Skole m's paradox has a parochial nature, and this fact weakens consid
erably Putnam's argumentation in 'Models and Reality'. Thus, even if his 
argumentation against moderate realism on the basis of the so-called 
Skolem Paradox were correct, his preference for verificationism over 
Platonism, and his rejection of a much more natural rendering of the 
paradox than the one he adopts from Skolem are based only on the 
prejudice against the existence of abstract mathematical entities and our 
epistemological access to them. 

§3 The Quine-Putnam indispensability argument 

Let us consider now the belief that the only (or, at least, the best) ar
gument on behalf of realism in mathematics is the success in the applica
tion of mathematics to physical science. According to this view, as Put
nam tells us in 'What is Mathematical Truth?'15, realism in the philosophy 
of mathematics is based both in mathematical experience and in physi
cal experience, and 'the rendering .under which mathematics is true has 
to be compatible with the application of mathematics outside of 
mathematics'. 16 Moreover, Putnam even maintainsl7 that, in view of th e 
integration of mathematics with physics, it is not possible to be a realist 
w ith respect to physics but a nominalist with respect to mathematics. 

First of all, it sounds somewhat queer that mathematics, the most ex
act of all sciences, with the possible exception of logic -if it is sound to 

15 'What is Mathe matical Truth?', p 73. 

16 Ibid. , p. 74. 

17 Ibid., p. 74. 
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distinguish between them-, has to justify the truth of its theorems and 
the existence of the entities about which she presumably speaks, by re
ferring to the success of its applications to physical science. As o b 
served by James R. Brown in his paper 'TI in the Sky'l8, the truth of ele
mentary arithmetical statements as, e.g., 'There is an immediate 
successor of 3 in the natural number series', or '2 is less than 3' is much 
more evident than the truth of any statement in the physical sciences. 
Something analogous occurs with elementary statements about sets, e.g., 
'If the set M contains x and y as its sole members, and the set C contains 
y, v and w as its sole members, then the intersection of M and C contains 
y as its sole member, and the union of M and C contains x, y, v and w as 
its only members '. Moreover, such statements are not only much more 
evident than the laws of physics, but also seem to be true in all poss ible 
worlds. Indeed , an existential mathematical statement as, e.g., 'There is a 
prime number greater than 100', whose truth seems to convey the exis
tence of the objects spoken about, seems to be tn1e in every possible 
world and, thus, such objects seem to exist in every possible world. On 
the other hand, statements in the physical sciences seem to be only con
tingently true, since it is not really d ifficult to imagine possible w orlds 
governed by different physical laws. 

It should be mentioned here that the Qu ine-Putnam tradition seems 
to have an inadequate understanding of the role of mathematics in p hysi
cal science. As has been correctly argued by James R. Brown in the 
above mentioned paperl9, Quine's claim that not only physical science, 
but also mathematics, is tested by experience via the so-called observa
tional sentences, seems not to be warranted by the history of science. In 
that history, Brown argues20, when there is an unexpected mathematical 
result, scientists have never concluded that it is the mathematics used (or 
part of it) that has been falsified and requires modification . They have 
concluded correctly that it is the physical theory (or part of it) that has 
been falsified . Brown claims against Quine21 that the ro le of mathematics 
in physical science does no t consist in constituting additional hypo the
ses, but in offering models ( in the sense in which the word 'model' is 

18 ·n· in the Sky', in A.D. Irvi ne, ed., Physicalism in Mathematics, 1990, pp. 95-

120. See p. 98. 

19 Ibid. , pp. 101-102. 

20 Ibid., p. 102. 

21 Ibid. , p. 102. 
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used in the natural sciences). In the face of adverse empirical results the 
model is substituted by a more adequate one, without claiming that the 
mathematical theory has been falsified. This theory has simply been 
shown to be inadequate as a model for those features of the physical 
world that the scientist wanted to explain. Thus, e.g., it is not the case 
that Euclidean geometry has been falsified by general relativity. It has 
simply been shown that Euclidean geometry is not an adequate model 
for the description of the spatia-temporal structure of our physical uni
verse. (We are not claiming here -and Brown most surely was not- that 
mathematics is unrevisable. The antinomies of naive set theory clearly 
yielded a revision in mathematics. But revisions in mathematics are in
ternally motivated, not the result of any empirical testings. Of course, 
there are also shifts of interest in mathematics, and these can be partly 
motivated by external sources. But shift of interest is not revision. A 
mathematical theory can loose its interest, e.g., if from the theoretical 
standpoint there is not much still to be discovered, or its results are sur
passed by a more general theory. It could also be the case that the 
physical theories to which it is applied are falsified or lose interest, in 
which case there is an additional, but not decisive reason, for the aban
donment of research in the mathematical theory.) 

Let us return to the Quine-Putnam argument, and compare it with the 
following similar fictional situation. Someone wants to argue that words 
have meaning and that statements express thoughts. However, instead of 
arguing directly, he claims that if it were not the case that words have 
meaning and that statements express thoughts, it would not be possible 
to explain how it is that there is literature and that it can be read and 
'understood' by different people. Now, languages have existed, in their 
oral manifestations, long before literature, as we conceive it, appeared 
on the face of the earth. It seems completely unreasonable to think that 
before the invention of literature words did not have meaning and 
statements did not express thoughts, or, at least, that there was no way 
to establish that words have meaning and that statements express 
thoughts. Indeed, it is not hard to imagine a possible world in which 
people communicate orally as well or as badly as we do in our world, al
though in that possible world there is no literature. What is not possible 
is a world in which there were literature but there were no languages. In 
a similar way, the historical origins of mathematics can be traced back 
many centuries before the advent of physical science, which, as is con
ceived nowadays, seems to trace its origins up to Galileo (and the physi-
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cal theories currently considered as true are products of the last two 
centuries). Now, although applicable to the physical (and other) sci
ences, mathematical theorems seem to be true even if all actually ac
cepted physical theories were false and, thus, the claim that only after 
the advent of modern physical science can we argue that mathematical 
theorems are true seems really amazing, to say the least. It is also ex
tremely unreasonable to think that before the advent of modern physi
cal science there was no way to establish the existence of mathematical 
entities, thus, e.g. , that there exists an imme9iate successor of 3 in the 
natural number series. Moreover, it is perfectly conceivable that the re 
exists a world in which all mathematical theorems known to present day 
mathematicians are true (supposing that current mathematics is consis
tent), and that mathematicians know as much mathematics as they actu
ally know, but in which none of the physical laws accepted as true 
nowadays were known to humanity. What is no t possible is a world in 
which physical science were as developed as it actually is, but in which 
our present mathematical theories (especially those applicable to pres
ent day physical science) were not valid, or, at least, were not considered 
to be valid. If we are going to argue on behalf of the existence of 
mathematical entities o r of the truth of mathematical theorems, we have 
to do it, as, e.g., Brown correctly maintains22 from within mathe matics 
itself. 

Quine's and Putnam's belief that the indispensability argument re p 
resents the only (or, at least, the best) argument on behalf of mathemati
cal realism and the truth of mathematical theorems, is based on an in
adequate view both of science and of our cognitive capacities. His 
criticism of logical empiricism notwithstanding, Quine defends a sort of 
empiricism that is also incapable of doing justice to the eminently theo
retical character of physical science. His whole conception of knowl
edge and experience o riginates in a behavio rism of doubtful scientific 
credentials. The whole epistemological tradition that originates with 
Quine, and of which Putnam and Benacerraf are prominent members, 
limits our cognitive capacities to sense perception, possibly garnished 
with a causal dressing. Its rejection of any other argument on behalf o f 
mathematical realism is bounded to their fear of admitting what Putnam, 
in an axiologically loaded terminology, has called 'non-natural mental 
powers' and 'mysterious mental powers' -but which could be more cor-

22 Op. cit. , p. 99. 
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reedy called 'categorial intuition' or 'intellectual intuition'-, or even of 
overtly admitting the existence of abstract mathematical entities. This is 
the reason why in 'On what there is'23 Quine refers to mathematics (~nd 
even to physics) as a convenient myth, as a useful fiction of high explana
tory value. Indeed, according to Quine, we cannot free ourselves of theo
retical fictionalism as soon as we transcend the so-called sensory data, 
without taking into account that precisely these pure sensory data are 
the first great fiction. (As has been argued by many authors24, it is ex
tremely difficult to isolate constituents of physical theories that are not 
theoretically contaminated.) On the other hand, Putnam made more ex
plicit than Quine his reluctance to admit the existence of abstract 
mathematical entities when in 'What is Mathematical Truth?'25 he de
fended a sort of realism without mathematical entities. Prima facie, it 
looks as if the indispensability argument -contrary to other possible ar
guments on behalf of mathematical realism- would allow Putnam to de
fend a sort of mathematical realism, without having to admit the exis
tence of numbers, sets and o ther 'undesirable' entities. (We are not 
going to dwell here on the issue of the cogency of such a mathematical 
realism, which has since been abandoned by its proponent.) What 
seems much clearer, however, is that Quine's view of mathematics as a 
convenient myth, together with his adhesion to the indispensability ar
gument and Putnam's view of a mathematical realism without mathe
matical entities paved the way for Field's philosophy of mathematics. 

§4 Paul Benacerraf's ontological arguments 

In 'What Numbers could not be'26 Paul Benacerraf has claimed that 
since there is more than one way -possibly infinitely many ways- to 
characterize numbers as sets, e.g., von Neumann's characterization and 
Zermelo's characterization, and since they possess incompatible pro p 
erties, numbers cannot be sets. Benacerraf argues27 that at most one o f 

23 'On what the re is' , p. 18. 

24 See , e. g., Mario Bunge, Philosophy of Physics, 1973, pp. 3 and 226. See also 
Dudley Shape re, Realism and the Search for Knowledge, 1984, specially Ch. 16. Fo r 
some recem discussion on the nature of physical theo ries, see, e.g., W. Balzer, D. A. 
Pearce and H. J. Schmidt, eds, Reduction tn Science, 1984. 

25 'What is Mathematical Truth', pp. 69-74. 

26 See footnote 3 above. 

27 Ibid., pp. 284-285. 
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those characterizations, which are not even extensionally equivalent, can 
be true . But since there is no ground to prefer one of them over any 
other, numbers cannot be sets. A second argument of Benacerraf in the 
same paper attempts to show that numbers cannot be objects. On this 
point he refers both to Russell and Quine, who had conceived arithmetic 
as the study of recursive progressions. The only numerical properties 
that would seem relevant for arithmetic are those had in virtue only o f 
being members of a recursive progression. No single numerical prop
erty that would individualize them as particular objects would be rele
vant for arithmetic. Hence, Benacerraf concludes that numbers are no t 
even objects. 

Benacerraf's two ontological arguments should be clearly distin
guished, since they are not only different, but have different purposes. 
Let us consider the firs t one. The fact that there are various characteriza
tions of numbers by means of different sets is not an unusual event in 
mathematics. As, e.g. Field has observed28, the real numbers are some
times identified with Dedekind cuts and sometimes with equivalence 
classes of Cauchy sequences. In the same vein, o rdered pairs, topological 
spaces and other mathematical entities can be characterized in different 
ways. Mathematicians, Platonists or not, recognize the existence of such 
a variety of characterizations without extracting from those situations any 
Benacerrafian argument. In particular, the fact that in different axiomati
zations of set theory we can show that entities characterized in very dif
ferent ways possess the properties that we usually attribute to numbers, 
although they do not have any other prope rty in common , does not al
low us to conclude anything about the nature of numbers. The situation 
described by Benacerraf is not very dissimilar to that which occu rs 
when two radically different senses have the same referent, as is the case 
of the senses of the following two definite descriptions : 'the French 
leftist who was Leon Trotsky's secretary from 1932 to 1939' and 'the 
mathematician and historian of logic who edited A Source Book in 

Mathematical Logic'. (If we consider not the definite descriptions b ut 
the corresponding conceptual expressions, the similarity seems even 
more plausible. The referent is in that case -following Husser! or Carnap, 
not Frege- the same unit set.) The fact that Jean van Heijenoort can be 

28 See 'Fictionalism, Epistemology and Mathematics' in his Realism, Ma the
matics and Modality, pp. 1-52, especially pp. 20-21 See also Saunders Mac Lane 's 
Mathematics : Form and Function, p . 106. 
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referred to in such extremely different ways, and that his life from more 
or less 1948 onwards has almost nothing to do with his former life 
(except for serving as a consultant for the Trotsky archives) -which 
makes him an excellent choice to illustrate Kripke's puzzle in 'A Puzzle 
about Belief- does not allow us to extract any ontological conclusions 
about van Heijenoort. It could well be the case that numbers were sets, 
or that they were any other kind of abstract entity, and that due to our 
cognitive limitations we would be forced to characterize them by means 
of sets which, apart from the properties that they have in common with 
numbers, do not possess any other property in common and, thus, are 
both inadequate but 'manageable'. (Moreover, it is possible that Benac
erraf is going too far when he attributes to set-theoretical reductionists 
the identification of numbers with particular sets. Indeed, in his paper 
reproduced in Benacerrafs and Putnam's anthology Carnap under
scores29 that the logicist merely produces, by means of explicit defini
tions in a system of logic, constructions of logical objects that, in virtue 
of those definitions, have the properties that numbers have. Perhaps, if 
asked by Benacerraf to comment on the situation under discussion, 
both Zermelo and von Neumann would have answered : 'This is the way 
in which numbers are represented in my system and that is the way in 
which numbers are represented in his system. I am not attempting to 
tell you what numbers really are'. Even in Frege's Die Grundlagen der 
Arithmetik there is a passage30 in which he admits that his identification 
of the number 0 with the set which is the extension of the concept 
'different from itseir involves some arbitrariness, since prima facie the 
extension of any other concept under which no object falls could have 
been identified with the number 0. On the basis of that passage some
one could try to render Frege's endeavor not as claiming to have shown 
that the number 0 is the extension of the concept 'different from itself' , 
but as claiming that by means of that and the subsequent defmitions, one 
can construe a system of logical objects for which one can prove, from 
logical axioms only, all the properties usually assigned to numbers. It 
should be clear that we are not arguing here for such an interpretation of 
Frege, but merely indicating that it would have textual evidence from that 
passage.) 

29 See R. Camap's 'The Logicist Foundations of Mathematics', p. 43, in P. Benac
erraf and H. Putnam, eds., Philosophy of Mathematics, 2nd edition, pp. 41-52. 

30 G. Frege, Die Gnmdlagen der Arithmetik, p. 88. 
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Now, even if Benacerraf had succeeded in showing that numbers 
are not sets, that would not allow him to conclude that numbers are not 
objects. It could well occur that numbers were not sets, and even that 
there were no mathematical entity to which all others were reducible, 
but that there were various fundamental mathematical entities, e.g., 
numbers, sets, relations, functions, etc., and that, because of their level 
of abstraction, it were possible to characterize each of them in one o r 
more ways in terms of each of the others. Thus, e.g., relations could be 
characterized, following Frege, as functions of the same number of ar
guments whose value is a truth value, and, on the other hand, functions 
of n arguments could be characterized as relations of n+ 1 arguments 
uniquely determined in their last arguments. Moreover, relations could 
also be characterized as sets of ordered pairs, and, on the other hand, 
sets could be characterized as relations of a single argument. Non
fundamental mathematical entities could then be characterized either as 
specializations of the fundamental entities, o r as combinations of the m , 
or as combinations of their specializations, or as equivalence classes of 
some already recognized entities. 

With respect to Benacerrafs claim that numbers are not objects, 
since arithmetic is the theory of recursive progressions, and, thus, only 
structural properties are relevant for arithmetic, i.e., properties that do 
not individualize them, the following comments seem appropriate. First 
of all , it is not sufficiently clear from Benacerrafs paper in which sense is 
the system of natural numbers indistinguishable from other systems of 
(as Benacerraf would say) 'supposed ' objects that constitute recursive 
progressions. He could be thinking of some kind of formalization of 
Dedekind-Peano arithmetic, o r of something like the hierarchy of 
(species of) structures that constitutes mathematics according to the 
school of Nicolas Bourbaki. Let us suppose first that Benacerraf is con
sidering some kind of formalization of Dedekind-Peano arithmetic in a 
system of logic. Then you have to distinguish at least two cases, namely : 
(1) the formalization is made in first o rder logic, or (2) the formalization 
is made in second order logic. In this last case we obtain a categorical 
theory, i.e., a theory all of whose models are isomorphic, but the theory 
would h~ve -at least according to the Quinean tradition- a strong onto
logical commitment not to the taste of Benacer~af. On the other hand, if 
the formalization is made in first order logic, the theory is not categori-

cal -not even ~ a-categorical (because of a theorem of Skolem)-, and, 
thus, it would have models non-isomorphic to the standard one -even 
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some of cardinality ~ o. In that case, to determine the standard model 
completely and exclude such undesirable models, one has precisely to 
take into account those properties of the system of numbers that would 
distinguish it from the other models. 

On the other hand, if Benacerraf is thinking that the system of natu
ral numbers is a particular case of a structure of recursive progression in 
the same way in which any group is a particular case of the group struc
ture as determined by the group axioms, then he is not justified in de-

nying the existence of numbers. Of course, a group G and a group G* 
share the same group structure. But that does not mean that they do not 
exist -in the sense in which Platonists conceive the existence of mathe
matical entities. Indeed, the fact (if general relativity is true) that the 
space-time in which we live has the structure of a particular Riemannian 
manifold of four dimensions with variable curvature does not allow us to 
conclude either that physics is the study of Riemannian manifolds of four 
dimensions with variable curvature, or that the space-time in which we 
live and the space-time points of which it is constituted do not exist. 
There are various thousands of copies of Benacerrafs and Putnam's Phi
losophy of Mathematics, and all of them have the same 'structure', since 
they share all the 'relevant' properties (for potential readers of the 
book). By a reasoning similar to that applied to numbers, Benacerraf 
should conclude that none of the copies of his and Putnam's book exist. 
And if a mischievous Platonist genetic engineer succeeded to produce an 
exact human copy of Paul Benacerraf, by a reasoning similar to that ap
plied to numbers, Benacerraf should conclude -his Cartesian cogito 
notwithstanding- that he really does not exist. Of course, Benacerraf will 
not extract in such cases the conclusion analogous to the one he ex
tracted in the case of numbers. But this difference brings to the fore the 
hidden ground behind Benacerrafs argumentation, namely, his preju
dice against the existence of mathematical entities. Thus, Benacerraf has 
not established that numbers are not .objects : he has presupposed that 
they are not. 
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§5 Benacerraf's epistemological argument 

In his excessively influential paper 'Mathematical Truth '31 Benacerraf 
has claimed that treatments of the nature of mathematical truth have 
been motivated by two different kinds of concerns that are not easy to 
reconcile, namely : (1) the concern of having an homogeneous semantic 
theory, in which the semantics of mathematical statements parallels that 
of non-mathematical statements, and (2) the concern of the compatibil
ity of the treatment of mathematical truth with a reasonable epistemol
ogy. Benacerraf considers that there is only one adequate semantic 
treatment of mathematical statements that is similar to that of non
mathematical statements, namely, the one offered by Tarskian seman
tics. This claim, however, does not seem completely correct . With re
spect to natural languages, Kripke has shown that Tarski's semantics is 
not completely adequate -as Tarski himself very well knew, but some so
called Tarskians had forgotten-, and he has proposed a more adequate 
one that seems to have been almost immediately superseded by the 
Gupta-Herzberger-Belnap revision theory of truth. (The relation be
tween this last theory and Tarski's theory of truth applied to natural lan
guages seems to be similar to that between relativity theory and Newto
nian mechanics, namely, the Tarskian theory is false in the light of the 
Gupta-Herzberger-Belnap theory, but in very special limiting cases they 
coincide.) On the other hand, although Tarskian semantics seems, in 
general, to be adequate for formalized languages, we are convinced that 
as soon as a substantial portion of mathematics is formalized, Tarskian 
semantics will require some modification to do justice to the fact that in 
mathematics there are many statements that are mathematically equiva
lent, although they seem to be theoretically unrelated and even belong 
to somewhat distant areas of mathematics. 

Our interest here, however, is in the other sort of concern men
tioned by Benacerraf and presented by him as a sort of requisite, namely 
that the treatment of mathematical truth be compatible with a reason
able epistemology. In other words, Benacerraf claims32 that an accept
able semantics should be compatible with a reasonable epistemology. 
But reasonable epistemology is for Benacerraf33 one that admits essen-

31 See footnote 4 above. 

32 'Mathematical Truth', p. 409. 

33 See p. 409. 
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tially sense perception as the sole form of knowledge, but that, accord
ing to him,34 differs from former empiricism because it has integrated a 
causal component. Thus, for someone to know that some particular 
statement is true there has to exist a causal relation between that person 
and the referents of the names, predicates and even quantifiers35 occur
ring in the statement. Moreover, Benacerraf also believes in a causal the
ory of reference, as that propounded by Kripke and Putnam. Specifi
cally, Benacerraf claims36 that in the case of medium sized objects there 
should exist a direct causal reference to the facts known and to the ob
jects that constitute them, whereas other sorts of knowledge, among 
which he includes our knowledge of laws and general theories, should be 
explained as based in some way or other on our knowledge of medium 
sized objects. It should be clear from such a characterization of a 
'reasonable epistemology' that it practically excludes per definitionem 
the possibility of having knowledge of abstract mathematical entities. 
But since Benacerraf requires37 of the truth of mathematical statements -
which, at least, in the case of existential statements seem to involve the 
existence of the entities spoken about- that they do not make it impos
sible that at least some of the mathematical truths be known according 
to the canons of his 'reasonable epistemology', and since abstract 
mathematical entities are not causally related to us, his requirement also 
practically excludes per definitionem their existence. 

Now, it seems very strange that the existence of mathematical entities 
and the truth of mathematical theorems (e.g., existential ones) be in 
jeopardy on the basis of an epistemological view, since in the history of 
philosophy not a single epistemological theory has succeeded in estab
lishing itself with the firmness of at least the theories in the less devel
oped areas of the natural sciences. More strange, however, is the fact 
that, as john P. Burgess has argued in his 'Epistemology and Nominal
ism·38, one of the authors cited by Benacerraf as a propounder of the 
causal theory of knowledge, namely, Alvin I. Goldman, has later ques
tioned his own causal theory of knowledge, and -what is much more im-

34 See p. 413. 

35 See p. 413. 

36 Ibid. 

37 Ibid., p . 409. 

38 'Epistemology and Nominalism', in A. 0 . Irvine, ed., Pbysicaltsm tn Mathe
matics, pp. 1-15. Seep. 6. 
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portant-, contrary to what Benacerraf does in 'Mathematical Truth', had 
limited his causal theory to contingent knowledge, in contrast to neces
sary knowledge and, thus, as Burgess comments, seems to have excluded 
the application of the causal theory to mathematics. Benacerraf's con
venient misinterpretation of Goldman is exclusively motivated by his 
desire to exclude abstract mathematical entities from any possible epis
temological access. (Indeed, even Field -of all people- in 'Fictionalism, 
Epistemology and Modality'39 recognizes that nowadays nobody be
lieves in a causal theory of knowledge as that on which Benacerraf bases 
his epistemological critique of mathematical Platonism. Nonetheless, as 
we shall see below, Field commits himself in his writings to some sort o f 
modified causal theory of knowledge, when he admits the Quine-Putnam 
indispensability argument as the only possible argument on behalf of 
realism in mathematics.) 

But the causal theory of knowledge is an inadequate epistemology 
even for the physical sciences. First of all, as was observed by James R. 

Brown in 'TI in the Sky'40, such a view has difficulties with generaliza
tions. Indeed, it seems very difficult to reconcile an epistemology based 
on sense perception, together with a causal component and possibly 
some sort of induction, with the laws of high generality and the sophisti
cated theories of physics. The causal dressing does not add anything to 
the solution of the difficulties of a similar character that have haunted 
other variants of empiricism and, specially, logical empiricism, in their 
attempts to explain the nature of physical theories. Empiricism, with o r 
without a causal dressing, is a non-starter in the philosophy of physical 
science. On the o ther hand, as has been underscored by various authors, 
such a view results specially inadequate in microphysics. As Michael D. 
Resnik comments in 'Beliefs About Mathematical Objects' 41, physicists 
sometimes theorize about physical particles before having the least em
pirical evidence about them.42 

39 Op. cit., p. 25. 

40 Op. cit. , p. 100. 

41 'Belief About Mathematical Objects', in A. D. Irvine, ed., Physicalism in 
Mathematics, pp. 41-71. See, specially, pp. 45-46. 

42 On this issue, see also james R. Brown's detailed a rgumentation both in "TI in 
the Sky', pp. 111-118 and in Ch. 5 of his 1be Laboratory of the Mind. However, the 
situation on which Brown bases his argumentation does not seem as clear as Brown 
would like. 
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On the other hand, even in macrophysics scientists ofte n postulate 
the existence of physico-geometrical entities, as the so-called singulari
ties of space-time in general relativity and cosmology- e.g., the center of 
black holes-, which presumably have causal effects but w ith which the 
possibility of being directly causally connected seems excluded, and 
even indirect causal connections seem theoretically loaded. Now, if the 
causal epistemology presupposed by Benacerraf in his rejection of any 
possible access to abstract mathematical entities seems to be inadequate 
to explain our knowledge of physics, it's inadequacy to explain mathe
matical knowledge should be even more evident, since mathematical 
knowledge is both more abstract and firmer than physical knowledge. 
Moreover, even if there were some causal connection present in 
mathematical knowledge, it would have a contingent nature and, thus, 
would not be decisive for a discipline that seems to produce necessary 
knowledge. Once again, only the prejudice against the existence of 
mathematical entities and our possible cognitive access to them consti
tu te the real ground for Benacerrafs argument. 

We have shown that the four cornerstones of current discussion in 
the philosophy of mathematics are really e mpiricist dogmas of a new 
sort, based essentially on the prejudice against full blown ontological and 
epistemological Platonism. Although we have considered them sepa
rately, those dogmas are in some sense intertwined and tend to re in
force each other. We will now briefly examine the impact of the above 
displayed argumentation on the most daring of current philosophies of 
mathematics, namely, Field's programme.43 

§6 The consequences for Field's programme 

Hartry Field's philosophy of mathematics is, in some sense, the cul
mination of that philosophical current originating in Quine, Putnam and 
Benacerraf that we have been considering, since it boldly extracts the 
ultimate consequences from its framework of shared beliefs. If the only 
argument on behalf of realism in mathematics and on behalf of the truth 
of mathematical statements is the indispensability argument, if mathe-

43 We will not attempt to deal here with all aspects of Field's views, but only with 
those re levant to the foregoing discussion, which are without doubt the most central. 
Thus, e .g., nothing is said about Field's treatment of modalities in some of his recent 
papers and very little about his discussion with Hale and Wright. 
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matics is -as Quine said in 'On what there is•44_ a convenient fiction, if any 
epistemological access to abstract mathematical entities is excluded, 
since they do not relate causally with us, and if we cannot characterize 
numbers uniquely and do not even know if they are objects at all, then 
why not explicitly conclude that such entities do not exist, and that exis
tential mathematical statements are strictly false , even though they are 
useful devices in the derivation of physical statements, but without any 
ontological import? 

Prima facie, however, Field's views seem to abandon the Quine
Putnam tradition, and in some details he even clashes with it. Nonethe
less, most of his views are really radicaliza tions of ideas to be found in 
Quine, Putnam and Benacerraf. As is well known, Field claims that 
mathematics does not need to be a corpus of truths to be successfully 
applied to the physical sciences. Moreover, he argues that existential 
mathematical statements are all false (and the universal ones just vacu
ously true), since there do not exist the mathematical entities whose exis
tence would make such statements true. According to Field, the prop
erty that mathematical statements need to have in order to be 
successfu lly applied to the physical sciences is not truth, but conserva
tiveness, which is a strong form of consistency. (Mere consistency would 
be insufficient, since a theory can be consistent and still imply false con
sequences about the physical world. 45) A mathematical theory is con
servative if it is consistent with any internally consistent theo ry about the 
physical world. In other words, a mathematical conservative theory, 
when added to the corpus of physical s tate ments does not imply any 
physical statement not implied by the corpus of physical statements -
even though, in practice, the obtention of that statement would be 
much more complicated without the help from the mathematical the
ory. (It should be mentioned here that Field conceives the role o f 
mathematics in physical science in a very similar fashion to Quine's and, 
thus, Brown's critique of Quine mentioned above, would also apply to 
Field.) 

Field's view of mathematics has probably been the most discussed 
and criticized in recent years by people working in the philosophy of 
mathematics in the Anglo-American world, and many of these critiques, 

44 'On what there is', pp. 17-18. 

45 See 'Realism and Anti-Rea lism about Mathematics', in Realism, Math ematics 
and Modali~y, pp. 53-78, specia lly p. 55. 
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e .g., those by Hale, Burgess, Brown and Irvine, seem adequate. Thus, e.g., 
Burgess seems to be correct when he claims that Field's program -which 
is really just a project- is not only of very improbable success, but even 
if successful in its nominalist reconstruction of the physical sciences, 
such a reconstruction would be of little interest to physicists. Indeed, as 
Burgess puts it in 'Epistemology and Nominalism•46, ontological econ
omy does not seem to have played any important role in the history of 
science. On the other hand, as many have argued47 and, moreover, is suf
ficiently clear, Field's views confl ict with the manifest evidence of many 
elementary mathematical theorems, e.g., arithmetical theorems that 
seem to be not only true and even necessarily so, but also trivially so. 
One would have to offer extremely good reasons to at least consider the 
possibility that they were not necessarily true and that their manifest 
obviousness is merely an illusion. However, ontological economy and 
the rejection of abstract mathematical entities seem to be very poor. rea
sons to embrace such an antiintuitive e nterprise with such a low prob
ability of success as Field's. Nonetheless, we are not interested here in 
criticizing Field's views directly, but will try to argue that they presup
pose the truth of both Quine's and Putnam's claim concerning the in
dispensab ility argument and of Benacerrafs ontological and e pistemo
logical arguments. Hence, with the collapse of the foundations, the 
w hole structure w ill fall down, including Field's views. 

First of all, it should be clear from Field 's writings that the only ar
gument on behalf of mathematical realism that he takes seriously is the 
Quine-Putnam indispensability argument. On the other hand, as can be 
seen from his discussion of Benacerraf s ontological argumentation in 
'Fictionalism, Epistemology and Mathematics '48, Field accepts Benacer
rafs ontological arguments and extracts from them the strong conclu
sion that, since numbers are not objects, they do not exist at all. With 
regard to Benacerraf s epistemological argument, it should be said that, 
notwithstanding the above mentioned passage of 'Realism and Anti
Realism about Mathematics', in which Field says that nobody believes 
anymore in the causal theory of knowledge propounded by Benacerraf, 
it should also be clear that he presupposes some sort of causal theory "of 

46 Op. cit , pp. 11-12. 

47 E. g., Irvine in the Introduction to Physicalism in Mathematics, p . xili. 

48 'Fictionalism, Epistemology and Mathematics', pp. 20-22. 
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knowledge . Thus, in 'Fictionalism, Epistemology and Mathematics'49 he 
argues that there exists a remarkable difference between the roles 
played by mathematical and physical entities in our explanations of the 
physical world. The role played by physical entities in those explana
tions is usually causal, namely, as causal agents that produce the phe nom
ena that are to be explained. But since mathematical entities are sup
posed to be acausal, their role in such explanations has to be different. 
Now, Field confesses50 that explanations which involve reference to enti
ties not causally connected with the phenomena to be explained seem 
to him rather strange. Here we have a possibly somewhat more cautious 
version than Benacerrafs of the causal theory of knowledge. 

Now, in the foregoing sections of this work we have shown that the 
Quine-Putnam thesis with respect to the indispensability argument, as 
well as both Benacerraf s epistemological argument and his ontological 
arguments (and also Putnam's skolemization argument) rest on the un
warranted assumption that we cannot have epistemological access to ab
stract mathematical entities, and even on the stronger assumption that 
mathematical entities do not exist. But since Field's programme presup
poses both the validity of Benacerraf's arguments and the Quine-Putnam 
claim that the indispensability argument is the only argument on behalf 
of mathematical realism that is worth considering, the pillars of Field's 
views turn to be extremely shaky, and this devoids such a desperate 
philosophy of mathematics of any interest or atractiveness (except pe r
haps as a technical exercise in logical ingenuity). 

However, not everything said by Field about mathematics is devoid 
of interest (as is to be expected of such an ingenious author) . There are 
some interesting points made by him that should be mentioned he re . 
Thus, e.g., we think that Field is correct when he asserts that the so
called Frege-Wright argument, based on the fact that in the languages 
usually known to logicians numerical expressions are singular terms, is 
insufficient to establish mathematical realism. Nonetheless, the analogy 
used by Field between the presumed mathematical fiction and literary 
fiction ignores completely the manifest necessity with which some ele
mentary mathematical statements impose themselves upon us, what 
makes us suspect that the so-called mathematical myth would be not 
merely a convenient one -as Quine and Field would like us to believe-, 

49 Ibid ., p. 19. 

50 Ibid., pp. 18-19. 
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but a necessary one. On the other hand, Field seems to have better 
grasped the difference between mathematics and physics than Quine 
and Putnam when he claims that mathematics is conservative but p_hys
ics is not, although his grounds for such a claim are, of course, different 
from those that we would give. In our case it is simply that, as Bob Hale 
puts it in his paper 'Nominalism'S I , if you consider that mathematical 
theorems are necessarily true, then you are committed to the conserva
tiveness of mathematics. Field's claim that conservativeness and truth are 
mutually independent also seems convincing, since, as he argues, physics 
is not conservative but is probably true-if present physics is not true , 
one can expect that at some time in the future the physics considered 
true at that moment will really be true-, and, on the other hand, con
servativeness does not imply truth either, since ZF+AC and ZF+•AC 
seem both to be conservative but only one could be true. Finally, it 
should be pointed out that by claiming that mathematics .is conservative 
but physics is not, and, thus, by being a nominalist (or fictionalist) with 
regard to mathematical existence but a realist with regard to that of 
physical entities, Field separates himself from the tradition on which he 
dwelled, since, contrary to that tradition, which considers mathematics 
(and even logic) as continuous with physics and, thus, as an empirical 
science, he d early states in 'Realism and Anti-Realism about Mathemat
ics'52 that he cannot accept that mathematics is continuous with physics. 
Once more we coincide with Field, but for different reasons, namely, 
since for us mathematical theorems seem to be necessary whereas 
physical statements are not. It is interesting to observe, on this issue, 
that if Field's views are consistent, he turns to be a counterexample to 
Putnam's claim in 'What is Mathematical Truth?'53 that it is not possible 
to be a realist with regard to physical entities but a nominalist with re
gard to mathematical ones. 

§7 OPENING THE DOORS 

Let us conclude this paper with some comments on our knowledge 
of mathematical entities. We will follow closely the little known episte-

51 'Nominalism', in A. D. Irvine, ed., Physicalism in Mathematics, pp. 121-144. 
See p . 123. 

52 'Realism and Anti-Realism about Mathematics', pp. 59-61. 

53 'What is Mathematical Truth?' , p. 74. 
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mology of mathematics developed by Edmund Husserl in his master
piece Logische Untersuchungen54, specifically in the Sixth Investigation. 

We usually say that an empirical statement like 'The ball is red ' or 'Joe 
is taller than Charles' is true or false , depending on how things are in the 
world, thus, depending on which states of affairs hold. Statements, pace 
Frege, refer to certain states of affairs, and are true if those states of af
fairs hold, and false if they do not hold, e.g., if the ball under considera
tion is not red but green. Sense perception presents us with the existing 
states of affairs, and in this respect confirms or disconfirms the proposi
tion expressed by the statement. But in sense perception only physical 
objects and sensible properties are given. Only the 'material ' constitu
ents of statements, namely, terms and predicates, have 'correlata' in 
sense perception (or even in imagination). Particles like the connectives 
'and', 'or', ' if.. ., then', the quantifiers, and even expressions like 'is larger 
than' have no correlata in sense perception . Nonetheless, we usually say 
that we can empirically confirm or disconfirm statements w hich contain 
such particles, and we recognize the difference in truth conditions be
tween the statements 'Mary and Julia are in the park' and 'Mary or Julia is 
in the park'. Constituents of statements that do not have any correlata in 
sense perception can be called 'formal constituents of statements', and 
the act of knowledge that fulfills such a constituent of statements is not a 
simple sense perception, but a categorial perception . Categorial pe r
ception builds on sense perception, but does not reduce to sense pe r
ception, and makes us acquainted with categorial objects. Categorial pe r
ception does not modify the underlying sense perception, since that 
would be a distortion that would produce another sensible object, but 
rather leaves untouched the sense perceptions on which it is founded 
and in which the sensible objects are given to us on which the new ob
jectualities are built. 

Husserl considers sets and states of affairs as examples of categorial 
objectualities. Hence, e,g., the state of affairs that Joe is taller than Charles 
is a categorial objectuality that builds on and structures itself on the sen
sible objects Joe and Charles given in sense perception . The state of af
fa irs that Joe is taller than Charles is a categorial objectuality and, indeed, 
a diffe rent one from the state of affairs that Charles is shorte r than Joe . 
(To both of them underlies the proto-relation, called by Husserl 

54 Logtsche Untersuchungen, 1900-1901, reprinted as Vols. XVlll, 1975 and XIX, 
1984, of the Husserliana edition. 
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'situation of affairs', that Joe has a bigger size than Charles. We will not 
comment here on Husserl's notion of a situation of affairs, since it is not 
required to understand what follows .SS) Analogously, given various o_b 
jects in sense perception, in categorial perception we are given the set 
of those objects. Such a set is not given to us in sense perception- we 
do not see it with our own eyes nor touch it-, but rather builds on what 
is given by sense perception and is-to use Husserl's terminology
'constituted' in categorial perception. The set is a new objectuality 
founded on sensible objects, and given to us in a categorial p erceptio n 
founded on sense perception. (Instead of 'perception', from now on we 
will frequently say 'intuition'-both sensible and categorial-, and, thus, 
following Husserl, include also the imagination, since for most of our 
present purposes an imaginative act can play the same role as a percep
tual act.) 

We have seen that categorial perception is founded on sense percep
tion but does not reduce to it, and that categorial objectualities are 
founded on sensible objects but do not reduce to them. Now, once 
categorial objectualities of this first level-like sets or relations-are 
given to us, new categorial intuitions can be built on the corresponding 
categorial intuitions of first level, and in such categorial intuitions of sec
ond level new categorial objectualities of second level are constituted
e.g., relations between sets, say bijections between sets, and also sets of 
relations, sets of sets (as, e .g., the power set of a given set), and so forth. 
In this way, repeating this process indefinitely, a hierarchy of categorial 
intuitions is obtained and a corresponding hierarchy of categorial objec
tualities is given to us, so that in categorial intuitions of the nth level cate
gorial objectualities of the nth level are constituted. 

From what has been said up to now, it does not seem clear how it is 
that the objects of pure mathematics are independent of experience, 
since the categorial objectualities given in the different levels of the hier
archy of categorial intuitions seem to be founded on sensible objects . 
Indeed, there are categorial objectualities that seem to possess a sensible 
component, and Husserl calls them 'mixed categorial objectualities'. An 
additional component plays a decisive ro le in the constitution of 
mathematical objectualities, namely, categorial (or formal) abstraction, 
which should not be confused with generalization. One can say some-

55 For a discussion of this Husserlian notion, see our papers of 1982, 1986 and 
1991 included in the bibliography. 
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what schematically that for Husserl mathematical intuition is categorial 
intuition plus categorial abstraction. Categorial abstraction, as categorial 
intuition, is neither a mysterious nor a non-natural process, but some
thing perfectly usual in mathematical knowledge. If we have a relation 
like that of being talle r than between Joe and Charles, we can substitute 
the terms by indeterminates, thus, by variables, say 'x' and 'y', and the 
relation of being taller than by a transitive, asymmetric and irreflexive 
relation. Analogously, given a concrete set M, we can substitute its ele
ments by indeterminates, and if we also substitute by indeterminates the 
concrete objects that belong to another concrete set C, and, moreover, 
we abstract, in general, from the peculiarities of the two sets, we can 
then consider bijections between one of those sets and a (not necessar
ily proper) subset of the other, and then consider their respective 
cardinalities. 

It is in the manner described, namely, by means of categorial intui
tion purified by categorial abstraction that the basic mathematical objec
tualities are constituted. Other mathematical entities can then be ob
tained e ither by combining different objectualities to form more 
complex objectualities-as Husser! and Bourbaki have seen56-, or by 
means of the formation of equivalence classes based on a congruence 
relation-as discussed by Frege57_, o r by other similar fo rmal means. 
There is nothing non-natural or mysterious in this cognitive process, 
since categorial intuition bu ilds on sensible intuition, and its objectuali
ties build on and structure themselves on the objects of sense percep
tion-which, after all, is even insufficient to give us a physical world co
herently structured, as studied by the physical and biological sciences. 
On the other hand, categorial abstraction is a perfectly common proce
dure in mathematics, which is responsible for the level of formal gener
ality attained by mathematics, as exemplified by universal algebra, gen
eral topology, category theory and other areas of contemporary 
mathematics. Without fear of paradox, it can be claimed that, although 

56 See Husserl's Logische Untersuchungen, Vol. 1, Ch. XI, and also his Formate 
und Transzendentale Logik, 1928, specially Part 1; reprinted in Husserliana Bd. XVII , 
1974. See also our dissertation Edmund Husser/s Philosophie der Logik und Mathe
matik im Lichte der gegenwdrtigen Logik tmd Gnmdtagenforschtmg, 1973. Fo r 
Bourbaki, see his 'The Architecture of Mathematics', in American Mathe matical 
Monthly 57, 1950, pp. 221-232. 

57 See his Die Grundlagen der Arithmetik, 1894, reprinted 1986 by Felix Me iner 
Verlag, Hamburg. See specially §§ 62-69. 
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categorial intuition builds on sensible intuition, there is no trace of sen
sible foundation in mathematical intuition58_ 

APPENDIX I 

In the course of our refutation of the skolemization argument-and 
elsewhere-we have argued that second order logic is more adequate 
than first o rder logic to render mathematical theories not only, in gen
eral, because of its superior expressive power, but, specifically, because 
it is immune to the cardinality-indeterminacy related to the Lowenheim
Skolem-Tarski theorems. However, it seems at first sight that second 
order logic is vulnerable to another, probably worst, form of indeter
minacy. Second order logic admits some non-standard semantics be
sides the standard one. In particular, there is the Henkin non-standard 
semantics with its non-full models rivaling with the standard semantics, 
all of whose models are full models, i.e., they have as many r~lations and 
operations as possible. As is well known, for Henkin's and other similar 
non-standard semantic renderings of second order logic one can obtain 
a semantic ·completeness result with its not less famous corollaries, 
namely, compactness and the Lowenheim-Skolem-Tarski theorems, 
whereas for the standard semantic rendering such theorems are false. In 
what follows, we will argue that such an indeterminacy in the semantic 
rendering of second order logic is in an important sense an illusion and, 
moreover, that it is possible to obtain corresponding deviant semantic 
renderings for first order logic, namely, renderings under which first 
o rder logic would be decidable. 

Firstly, there is a theorem of Per Lindstrom that establishes that there 
is no proper extension of first order logic for which both the Compact
ness theorem and the Lowenheim-Skolem theorem are true. Second or
der logic is clearly a proper extension of first o rder logic in any reason
able sense of the word 'extension' and, thus, at least one of these two 
theorems should be false for second order logic. This is precisely what 
occurs with second order logic endowed with its standard semantics. 
Under the standard rendering both the Compactness theorem and the 

58 For a much more detailed treatment of Husserl's epistemology of mathemat
ics see our paper of 1987 included in the bibliography. 
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Lowenheim-Skolem theorem are false. Since, as we mentioned above, 
those theorems can be obtained for the Henkin and other non-standard 
renderings, it is a corollary of Lindstrom's theorem that such non
standard semantics are inadequate for second order logic. In fact, what 
such semantic renderings really do is to interpret second order logic in 
first order logic, for which, as is well known, the Compactness theorem 
and the Lowenheim-Skolem theorem (and also the Semantic Complete
ness theorem) are true. 

Moreover, one can obtain for first order logic similar deviant seman
tic renderings, which essentially interpret first order logic in proposi
tional logic and allow us to derive a decidability result for 'theoremhood' 
in such a 'first order' logic without contradicting Church's undecidability 
result. It is, however, a corollary of Church 's theorem that such non
standard semantics are inadequate for first order logic (in the same fash
ion as Henkin's and other non-standard semantics are inadequate fo r 
second order logic). 

To make our ideas somewhat precise, let us consider a first o rde r 
language with the usual logical and auxiliary signs-we need not specify 

them except for the sign '-,' for negation and the now usual sign for the 

universal quantifier 'V' , denumerably many individual variables x1 , 

x2, ... , denumerably many monadic predicates A1 , A2, ... , and for n~2, de
numerably many n-ad ic predicates R1n, R2n, .... We can now proceed in 
any of two different ways to obtain a monadic rendering of the n-adic 
predicates. We can either establish a one to one correspondence be
tween the n-adic predicate letters and the monadic predicate letters in a 
fashion similar . to Cantor's one to one correspondence between the 
natural numbers and the rationals, or we can simply reinterpret the n
adic predicates as 'new' monadic predicates, deleting all but the first in
dividual variable of any n-tuple of variables to which it was supposed to 
apply, o r even deleting all individual variables and the corresponding 
auxiliary signs. In the first and second case we would have a rendering of 
first order logic in monadic first order logic, whereas in the last case the 
rendering would be in propositional logic. Thus, the formula Rin(xl , 
x2, ... ,xn) of first order logic would be assigned the formula Ak(XI) under 
the first rendering, where Ak is the monadic predicate assigned to Rin 
under the one to one correspondence, the formula Rin(xl) under the 
second rendering, where Rin is seen just as a new monadic predicate, 
and the letter Rin, which is now simply a propositional variable, under 
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the third rendering. In any of the three renderings, logical signs are ren
dered by themselves, as are also rendered the auxiliary signs (if not de
leted, as occurs with many of them under the last rendering), and vacu
ous quantifiers are deleted. Thus, e.g. , under the first rendering the 

closed sentence (V'xl) ... (V'xn) -,Rin(xJ, ... ,xn) is assigned to CV'x1) 

-.Ak(Xl), where Ak is the monadic predicate paired with Rin under the 

one to one correspondence, whereas it is assigned to (V'x1) -,Rin(xl) 

under the second rendering and to -,Rin under the third rendering. One 

can easily establish that all three renderings are consistent in the sense 

- that if T is a first order theory and T* its corresponding theory under 

any of the three renderings, and there is a formula lj1 * in L(T*) such that 

1--ljl* and 1 •V* in T*, then J-ljl and I •V in T, where lj1 is the formula in 

the original first order language that corresponds to ljl*. Hence, T* is 
consistent if T is. Moreover, one can easily show that the interpretation 
of a first order formula is a theorem of monadic first order logic under 
any of the first two renderings or of propositional logic under the third 
rendering if and only if the original formula is a theorem of full first o r
der logic59. But both monadic first order logic and propositional logic 
are decidable. Thus, under any of these renderings first order logic 
would be decidable. This is a very similar situation to that which occurs 
when you give second order logic a non-standard Henkin interpreta
tion60. To interpret an n-adic predicate by a monadic predicate is consis
tent, but you are not giving the n-adic predicate its full or adequate inter
pretation. As indicated above, Church's theorem can play for first o rder 
logic a similar task as Lindstrom's theorem for second order logic, 
namely, that of excluding such consistent but clearly deviant interpreta-

59 This argumentation is similar to that used in , e. g., Elliott Mendelson's classic 
Introduction to Mathematical Logic to establish the consistency of first order logic 
relative to the consistency of propositional logic. 

60 Someone could argue that this is really a syntactic interpretation of a theory 
in another theory, w hereas the Henkin interpretation of second order logic is a se
mantic one. However, one could transform the three syntactic interpretations of first 
order logic given above in semantic interpretations precisely in a fashion similar to 
that of Henkin's construction of the canonical model in his proof of the semantic 
completeness of first order logic, in which the semantic interpretation is essentially a 
mirror image of the new theory (endowed with all the desired properties of syntactic 
completeness, etc.) obtained on the basis of the original theory. 
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tions. Hence, after aU, in the important sense under discussion, second 
order logic is not essentially more indeterminate than first order logic. 

APPENDIX II 

In this paper we have argued only indirectly against Field 's philoso
phy of mathematics, namely, by showing that it is based on theses de
veloped by Quine, Putnam and Benacerraf that, although widely ac
cepted, are really empiricist dogmas of post-Quinean Anglo-American 
analytic philosophy. On the other hand, in our paper 'Inte rde rivability 
of Seemingly Unrelated Mathematical Statements and the Philosophy of 
Mathematics' we had argued that more traditional philosophies of 
mathematics, like constructivism, formalism, pre-Fieldian nominalism , 
empiricism and Fregean Platonism, have serious difficulties to assess 
the (meta-) mathematical fact that there exist mathematical statements, 
e.g., the Axiom of Choice and Tychonoffs Theorem61, which seem to 
be completely unrelated with regard to their content, but nonetheless 

' 

are interderivable . We spared Field's 'philosophy of mathematics of a 
similar critique. However, it should be sufficiently clear that for a con
ception of mathematics which denies the existence of mathematical en
tities and, thus, for which all existential mathematical statements are false 
and all universal ones vacuously true, the existence of seemingly unre
lated mathematical statements must look somewhat puzzling. For, first 
of all, it is very doubtful that, e.g., the Axiom of Choice and all its many 
equivalents can be rendered in the same logical form, since some of 
them, e.g. , the Trichotomy of Cardinals, are clearly universal statements 
(and, thus, vacuously true, according to Field), whereas others seem to 
admit an existential rendering (and, according to Field, would have to be 
false). Hence, in that case, if Field is right, we would have interderivable 
statements with different truth values. (But even if all those interderi
vable statements admitted the same formal rendering, e.g., as universal 
statements, the fact is that not all universal statements in the language of 
mathematics are interderivable with them. Thus, even under such an ex
tremely _improbable assumption as that all those statements have the 

61 Tychonofrs Theorem affirms that the product of a family of compact topo
logical spaces is a compact topological space. 
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same logical form, we would not be able to give an adequate assessment 
of the interderivability of seemingly unre~ated mathematical statements.) 

A related but more simple and straightforward argument against 
Field's philosophy of mathematics is the following. Consider any theory 
Tin a first order language L. As is well known, a theory Tis model com-

plete exactly when for any two models M and M* ofT, if M is a substruc

ture of M* , then M is an elementary substructure of M*62 . A criterion 
for the model completeness of a theory T in L is that for any existential 
sentence tj1 in L there exists a universal sentence lJr in L such that the in
terderivability of 4> and lJr is a theorem ofT. But, according to Field, cj> is 
false, since it is existential, and lJr vacuously true, since it is universal. 
Hence, if T is consistent and Field's conception were correct, cj> and lJr 
could not be interderivable in T and, thus, T could not be model com
plete. Thus, if Field were right, there could not be any model complete 
theory. However, there are model complete theories. Therefore, Field's 
conception is false. Hence, Field's philosophy of mathematics, as it 
stands, is not only totally unwarranted, as was argued in the main text, 
and intuitively false, but also demonstrably false. 

Universidad de Puerto Rico 

62 Speaking somewhat loosely, we can say that a model M of a theory T in a lan
guage L is a substructure of another model M• of T if and only if the universe of M is 
a subset of the universe of M• and for any atomic formula of L (in n variables) and 
for any n-tuple of members of the universe of M, the n-tuple satisfies the atomic for
mula in M if and only if it satisfies the formula in M•. ll is easy to prove that the 
same is valid for aU quantifier-free formulas in L M is an elementary substructure of 
M• if and only if the same is valid for all formulas of L (including those that contain 
quantifiers). 
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