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GENERAL COVARIANCE FROM 1HE PERSPECTIVE OF 
NOETIIER'S TIIEOREMS 

HARVEY R. BROWN* AND KATHERINE A. BRADINGtr 

I. Introduction 

Most a'l,tmmrts about the fommlalion and content of 
general covatiatrce are mere shadow boxing. Since all viable 
theories m11st be generaf!J covariant, the on!J question of 
interest is their relative simpliciry and the mtts and bolts of 
their construction. 

J. BARBOUR (2001) 

Questions concerning the meaning of the principle of general 
covariance and, perhaps to a lesser extent, its precise historical role in 
the development of Einstein's general theory of relativity (GR), never 
quite seem to go away. 1 General covariance is a bit like the principle of 
equivalence: much cited, often misunderstood, and a noble, if 
treacherous, source of occupation for the philosopher of physics. After 
all, in the process of developing GR, Einstein himself got seriously 
confused about it in a number of ways, and his mature writings never laid 
the matter to rest. Our own ideas on the topic were largely the by
product of immersion in the 1918 theorems of Emmy Noether, whose 
work was inspired by the attempt amongst the Gottingen 
mathematicians to understand the technical role of general covariance in 
the variational approach to GR. The results of Noether's work provide 
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an illuminating method for testing the consequences of what we shall 
refer to as "coordinate generality" and for exploring what else must be 
added to this requirement in order to give the general covariance of GR 
its far-reaching physical significance. The discussion takes us through 
N oether's first and second theorems, and then a third related theorem 
due to F. Klein (which we call the Boundary theorem). Along the way 
contact will be made with the contributions of, principally, J. L 

• 
Anderson, A. Trautman, P. A. M. Dirac and R. Torretti, 
the father of the whole business, A. Einstein. 

not to ment10n 

II. Pre liminary con s iderations . 

Let us start with the familiar electromagnetic action in a spacetime 

with the (possibly curved) metric tensor field g11v which has Lorentzian 
signature and whose determinant is denoted by g: 

(1) 

where -~v = 1\. .v- A...IJ and n is an arbitrary compact region of 

spacetime. fWe are adopting the Einstein summation convention for 
Greek indices throughout.) If, as is well-known, we apply Hamilton's 
principle with respect to variations in the 4-potential ~' then we obtain 

the covariant form of Maxwell's equations in the source-free case: 

(2) 

N ow suppose we choose similarly to apply Hamilton's principle with 

respect to variations in gllV, treating Gust for the sake of argument) SEM 

as the total action. Then we immediately obtain 

Tv.v=O (3) 

where as usual in this context the stress-energy tensor T
11

v is defined in 

terms of the relevant variational derivative of the lagrangian density LEM: 

-2 oL 
TIJ.V: = -r===: s:: ~ • -y-g ug 

(4) 

The result (3) is pretty disastrous: it means that ~v = 0. If we want the 

metric tensor to be a bona fide dynamical player, we need to add 
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another term to the action which is a functional of at least the g11v and 
their derivatives, but not of the A

11 
and their derivatives-which is of 

course what is done in GR. But note that the electromagnetic field 
variables do not require an analogous second contribution to the action, 

independent of gJJ.v. Indeed, general covariance goes some way to ruling 
out such a possibility, as we see in section V. 

Recall now that the Lagrangian in S EM is a scalar density, so S EM is 
strictly invariant under general (infinitesimal) coordinate transformations 

(5) 

where ~JJ. is an arbitrary vector field, and £ taken to be small. This 
condition is sufficient, but not necessary, for the general covariance of 
the Euler-Lagrange equations (2) and (3), as we see below. Now a 
subgroup of this group of arbitrary coordinate transformations is that 

associated with rigid spacetime translations for which the ~ll in (5) are 
now independent of the coordinates. It follows that elements of this 
'rigid' subgroup are also 'N oether symmetries', and are specifically of 
the kind that figure in Noether's first (and more celebrated) theorem 
that leads to a connection between symmetries and conservation 

principles.2 

The theorem, in a generalised form, is this. Suppose that the first 
o rder variation in the action S vanishes (up to a surface term, of which 
more below) under a given group of infinitesimal transformations of the 
dependent or independent variables that depend on a number of 
arbitrary constant parameters. Then for each such parameter there is a 
linear combination of the Euler exp ressions associated with each of the 
dependent variables (fields) that is equal to the divergence of the 
associated 'Noether current'. (Recall that the ''Euler expression" is the 
variational derivative of the lagrangian density with respect to the cho sen 
field variable; when it vanishes, as a result of applying Hamilton's 
principle to that field, the E uler-Lagrange equations are said to hold for 
the field. The Noether current is a quantity which depends on, inter alia, 
the way the lagrangian density in turn depends on the derivatives of all 
the field variables.) If the mentioned linear combination of Euler 

2 The English translation of Nocther's celebrated paper (Nocther 1918) is found in 
Tavel (1971). Good accounts of the first theorem are found in, for example, H ill 
(1951), Trautman (1962) and Doughty (1990). 
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expressions happens to vanish, a continuity equation is obtained of the 
form: 

(6) 

where the index k in the current picks out one of the constant 
parameters involved in the symmetry transformation. From (6) a time
independent Noether 'charge' can finally be constructed by integration 

of j~ over a 3-dimensional spatial region with suitable boundary 

conditions. 

Let's apply Noether's first theorem to the electromagnetic action (1), 
using the invariance under rigid spacetime translations. If we assume that 

the Euler expressions associated with variations in the ~ vanish, i.e. if we 

assume Maxwell's equations (2) hold, then the Noether condition reduces 
to: 

(7) 

• 

where T~v is defmed as in (4) and J~ is the Noether current associated 

with SEM . This current, it turns out, takes the form 

(8) 

·~ aLEM A o~L 
l a = oA a ,(J- (J EM 

a~ 

and the form of T~v can be obtained directly from (1) and (4): 

1 
T~v = -~PF~ + 4 g~vFa~Fa.ll. (9) 

Now using again the field equations (2) it can be shown from (8) and 
(9) that 

We thus see that the Noether current 1! equals Fcr: up to a 

divergence term. But we still have not obtained a co nservation 
principle, because the left hand side of Noether's equation (7) does n ot 
vanish. This is also seen by using (10) together with (7), obtaining 
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r:~ = o. (11) 

The failure of this formulation to correspond to a true conservation 
principle resides in the fact that it is the covariant, not the ordinary 
derivative that appears in the equation. One way to get rid of this 
impediment is to go to the special case of the flat Minkowsk.i metric 

gllv = llJiv, in which there are global (inertial) coordinates such that 

llJ!v,A = 0, or equivalently, such that partial and covariant derivatives 
coincide. The Noether condition (7) now reduces in these coordinate 
systems to the desired form 

J·Jl - TJ! -0 
V,Jl - V,J! - ' (12) 

What does this example illustrate? First, that it is not enough that 
certain 'global' transformations of the dependent and/ or independent 
variables are Noether symmetries-i.e. ones under which the action is 
invariant up to a surface term-for there to be a conservation principle, 
or even a continuity equation. (An analogous situation holds for the 'local' 
symmetries like general covariance that feature in Noether's second 
theorem, as we shall see.) What more is needed? Trautman3 long ago 
recognised the importance of this question and emphasised that unless 
all the Euler expressions vanish on the LHS of the Noether condition-a 
necessary but not sufficient condition for all the associated fields to b e 
dynamical4- a conservation principle need not ensue. But he also 
emphasised the relevance of the possible exis tence of "motions" 
(isometries) in the spacetime in cases like ours where the metric field is 
non-dynamical. Recall that in the above example, the conservation 
principle holds perfectly well, and is on(y interesting, when the Euler 

expression associated with gJiv -which is essentially TJ!v does not 

vanish. What secures the conservation principle, besides the vanishing 
of the remaining Euler expression associated with ~, is the condition 

that gJ!v is an absolute background geometry of a special kind: it is flat. 

(Actually, conservation laws exist more generally whenever the 
spacetime has constant curvature.) 

Secondly, it is the flatness of the background geometry that permits 
the Noether symmetries , which involve certain, special transformations 

3 See Trautman (1962), sections 5-2 and especially 5-3. 
4 An apparent example of a non-dynamical field that is nonetheless subject to 
Hamilton's principle is found in Sorkin (2001). 
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between global coordinate systems, to have an active interpretation. It is 
not enough for the symmetries themselves to be 'global' in the other 
sense that they do not depend on the coo rdinates. We return to this 

point in section VIII. 

T hirdly, the example exhibits a co nnection between the Noe ther 

current and the variationally-defined stress-energy tensor (4). This 

connection is a consequence of a generic structural feature of generally 

covariant theories of matter, which is captured in a Noether- type 
theorem that was first demonstrated by Felix Klein in 1918. Discussion of 

this issue will be found in section VI. 

Fourthly and fmally, let us not forget the 1917 lesson of E. 
Kretschmann,s which in this context is that the original Maxwell theory 

in Minkowski spacetime is no different from a11y theory in being 

susceptible to a generally covariant formulation. It is a commonplace 
that at the level of the field equations, the price of the move to general 

covariance in Minkowski spacetime is the explicit appearance of 

previously implicit geometric structure (in particular the affine 

co nnection coefficients) in (2): 

(13) 

But implementing a generally covariant formulation of the theory add s 
nothing new to its empirical content. As Ohanian and Ruffini write ,6 "We 
will obey this commandment [general covariance] for the best of all 

reasons-it costs us nothing to do so." And yet the fact that there is no 

cost is itself non-trivial. For, as we shall see in section IV, the move to 

general covariance immediately raises the spectre o f 
underdetermination. It might seem odd that a mere reformulation of a 

well-behaved dynamical theory, such as Maxwell theory in Minkowski 
spacetime, should complicate the issue as to whether it has a well
defined initial value problem. Indeed, realisation that the complication in 
this case must be a mere artifact of the new generalised presentation, i .e. 
that it must be innocuous, forces one to make a crucial decision. One 
must accept either that a privileged class of global coordinate systems
the inertial systems- is required in the process of prediction, or one 

5 An excellent, detailed analysis of Kretschmann's famous paper (Kretschmaon 1917) 
is found in Rynasiewicz (1999); see also Norton (1993) in this connection. 
6 See Ohanian and Ruffini (1994), p. 373. 
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must embrace the cLeibniz equivalence' of diffeomorphically related 
versions of the world. 

As for the first option, the inertial coordinate systems clearly are 

privileged in Minkowski spacetime, but the question is whether they are 
essential for the purposes of prediction in Maxwell theory. If they are, 
there is hardly any point to imposing general covariance. But it seems at 
any rate more natural to adopt the second option. One amongst several 
possible reasons for this is that an analogous threat of 
underdetermination in the formulation of electromagnetism involving 
the 4-potential ~-which arises because the equations are covariant 

under local gauge transformations of the ~-is removed once it is 

realised that the empirical content of the theory is gauge-independent. 
(In section VI we will see a connection of sorts between the existence of 
gauge invariance of this sort and the requirement of general covariance 
for equations for vector matter fields.) Einstein's struggle from 1913 to 
1914 with the implications of the "hole argument"7 in GR leads one to 
surmise that until that period he had not properly considered either the 
question as to whether special relativity has a generally covariant 
formulation, or the significance of the gauge structure of Maxwell 
theo ry.8 

III. Gene ral covariance vs. coordinate ge n erality. 

We saw in the previous section that the invariant action (1) must b e 

supplemented with a further term if g11
v is to play a valid dynamical role 

in the theory. Suppose we require that the ensuing equations of motion, 

both for gv.v and AJJ, are generally covariant. What kind of restriction o n 

the action is this? 

A brief look at the early history of the action principle in GR is 
enlightening in this respect. In 1915 D. Hilbert had proposed a pure 

7 Recent discussions of the hole argument can be found in, e.g., Norton (1993), 
Rynasiewicz (1999), and Saunders (2001 ). 
8 It was Einstein's belated insigh t that different spacetime structures related by 
diffeomorphisms are nothing o ther than different representations o f the same reality 
that solved the underterminatio n problem in GR. Now, diffeomorphisms end up 
having a much more interesting creativ e role within the "best-matching" (Machian) 
approach to gravitational dynamics defended by Barbour. H ere, they arc essential in 
the process of comparing, not two representations o f a given geometry, but two 
distinct geometries in order to capture what their intrinsic difference is. Further 
details can be found in Barbour (2001) and the works cited therein. 



______________________ _. ............. 

66 HARVEY R. BROWN AND KATHERINE A. BRADING 079 

gravitational action whose lagrangian density is the scalar curvature 

density RFi. This action is clearly invariant under arbitrary 

diffeomorphisms. But in 1915 and 1916, Einstein proposed two versions 

of what is sometimes called the 'T-f"' action. The first contained a 

lagrangian density of the form g~-'vr;pr~a, and was defined only in relation 

to special coordinate systems for which Fi = 1. (I t is remarkable that 

despite his commitment to general covariance, for a period in 1915 and 
1916 Einstein thought that res triction to such special coordinates would 
lead to a significant simplication of gravitational physics. We return to 
this issue in section VII.) The second version of the action contained the 

lagrangian density g~-'v(r;pr~a- r~vr!p)Fi, defined now for an arbitrary 

coordinate system (and reducing to the first version for the m entioned 

special coordinates, since when aa(Fi) = 0 then r!p = 0).9 What is 

interes ting for our purposes is that the latter version of the r-r action is 
clearly no t invariant with respect to arbitrary coordinate trans
fo rmations, although it leads to the same generally covariant field 

equations for gJJv as Hilbert's. 

The fact that it is sufficient b11t not n ecessary that the first-order 
variation in the total action S strictly vanish under arbitrary infinitesimal 
diffeomorphism s in order for the E uler-Lagrange equations to b e 
generally covariant is today no secret, but its acknowledgement in 
modern texts on GR is no t guaranteed.10 To see what is going on 
technically, recall that Hilbert's invariant action bas a curious property. 
Despite being of second order (i.e. dependent on first and second 

derivatives of gJJv) it somehow gives rise to only second-order, rather 

than fourth-order, E uler-Lagrange field equations. The Einstein r-r 
action, which is first-order, demonstrates how this magic occurs. 
Subtracting Einstein's lagrangian density from Hilbert's, one is left with a 
term that takes the form of a total divergence of a first-order functional 

of g~-'v. This term contains all the second-order quantities in the Hilbert 
action. But it is known from the calculus of variations that to any 

9 The abbreviated form of the action appeared in Einstein (1915, 1916a), and the full 
form in a footnote in Einstein (1916b). Note that Einstein's connection coefficients 
were the negative o f the usual Christoffel symbol. 
10 In Misner, Thorne and Wheeler (1973), p. 503, for instance, one reads that: " ... the 
action integral ... is a scalar invarian t, a number, the value of which depends on the 
physics but not at all on the system of coordinates in which that physics is 
expressed". 
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Lagrangian density can be added a total divergence without affecting the 
Euler-Lagrange equations. So the Hilbert and Einstein actions are 

effectively the same-as Einstein fully apprecia ted. (Actions of the r-r 
kind, which are invariant under general coordinate transformations up to 
a surface term, are sometimes said to be "quasi-invariant", or, perhaps 
regrettably, "covariant". Interesting quasi-invariant actions arise not just 
in GR of course; the standard action of the free Newtonian particle is 
quasi-invariant relative to Galilean boosts. I t is noteworthy that Noether 
herself did not take into account such cases in her general treatment of 
the variational problem.) 

Now in Lovelock (1969) we find the following result. In a spacetime 
of four or less dimensions, any strictly invariant, second-order 
gravitational action that gives rise to second-order field equations must 
be associated with a lagrangian density which is a linear combination o f 
the Hilbert lagrangian density and a cosmological term: 

(14) 

where R is the curvature scalar. (Note that I g I appears rather than the 
usual -g, because Lovelock made no assumptions about the signature of 

gllv .) A strengthened version of this result was reported in Grigore 
(1992), concerning the class of first-order, quasi-invariant gravitational 
actions. Grigore's result, the proof of which is especially complicated, 
states that independently of the dimensionality of spacetime, the 
lagrangian density appearing in this action must take the form of a linear 

combination of the 1916 Einstein r-r lagrangian density11 and a 

cosmological term: 

(15) 

The Lovelock-Grigore theorems are evidently highly non-trivial and 
they share the premiss that the Euler-Lagrange equations must be 
generally covariant. But it is worth emphasising that the mere 
requirement that diffeomorphisms are Noether symmetries is far too 
weak to engender anything like these results. Indeed we have seen that 
both results explicitly require in addition that the Euler-Lagrange 

lt Grigore does not mention Einstein's 1916 lagrangian density, but his expression is 
equivalent to it. 
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equations are no higher than second-order. We recall, however, that the 
generally covariant Brans-Dicke (1961) theory of gravitation also contains 

second order equations in gflv, but its second-order gravitational action is 
not Hilbert's. Consider, in the same spirit, the following two first-orde r 

. 
act1ons: 

sgrav = J lp gva B}.l ;V Bp;a.Jjgid4x; 

Sgrav = J 81-la(r~,_- f~,_)gv~g'-Y(r;,- r~)vfjgid4X 
(16) 

where Bfl is some vector field, ~" is the usual metric-compatible 

connection (Christoffel symbol), and f~,_ is some distinct connection. 
These actions too are invariant under diffeomorphisms, so they might 
appear at first sight to satisfy the Grigore conditions, even though each is 
quite different from the Einstein 1916 action. Of course the reason that 
these three cases circumvent the Lovelock-Grigore results is that each 

introduces a geometric object field over and above gflv (in the Brans
Dicke case a scalar field). Both Lovelock and Grigore are assuming that 

the gravitational lagrangian density is constructed out of the gflv field 
and its derivatives, alone. This assumption is, like the previous one 
regarding the second-order nature of the field equations, quite 
independent of the requirement that the Euler-Lagrange field equations 
be generally covariant. 

That the gravitational interaction in GR should be associated with the 
existence of a metric field with Lorentzian signature finds its motivation 
in all those empirical results that are related to the equivalence principle, 

as long as the trajectories of freely falling test particles are taken to 
correspond to time-like geodesics.12 The strong version of the principle 
presupposes that no more than the m etric field is needed to account for 
the gravitational potential. In particular, there is no need to introduce 
any geometrical objects into the gravitational action that are absolute, in 
the sense of not being subject to Hamilton's variational principle (i.e. in 

12 For a particularly good discussion of the strong equivalence principle, see Eh lers 
(1973). Note that the Brans-Dicke theory, which postulates a scalar field as well as gi.V, 
satisfies the "meclium-strong" or "semistrong" version of the equivalence principle. 
For a discussion of this distinction, see RindJer (1977), section 1.20. It should be 
stressed that in all these versions of the principle, it is being assumed that the 
geodesic deviation associated with tidal gravitational effects are curvature-related. In 
the so-called teleparallel approach to GR., it is not afftne curvature that gives rise to 
geodesic deviation but torsion; for a brief review see Blagojevic (2002), pp. 68-72. 
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the sense of acting but not being acted upon). The significance of this 
point will be discussed in section VII below. In the meantime, the point 
we wish to reiterate-the point that Anderson (1964, 1966, 1967) and 
Trautman (1966) went to pains to emphasise- is that general covariance, 
puny though it is as a constraint on the equations of motion per se, leads 
to highly non-trivial conditions when combined with further demands. 
The demand we are interested in here is consistency with the s tro ng 
equivalence principle-or at any rate with the principle that nothing 

o ther than the dynamical gv.v field is necessary in order to account for 
gravity. (This last principle has itself occasionally been referred to in the 
mainstream literature, for better or for worse, as " the principle of 
general covariance" .13 In order to avoid any confusion, we shall 
sometimes use the term "coordinate generality" when we particularly 
wish to emphasise that we mean general covariance in the weak, 
Kretschmann sense.) 14 

IV. Noether's second theorem 

In the book based on his 1970s Florida lectures on GR, 15 P. A. M. 
Dirac emphasised a particular feature of the coupling of gravity with 
matter fields: that the Euler-Lagrange equations, obtained by varying the 
total action with respect to each of the distinct dynamical fields and 
using Hamilton's stationari ty principle, are not all independent of one 
ano ther. Dirac considered the specific case of a continuous distribution 
of charged matter, interacting with the electromagnetic field, with b o th 
'fields' coupled to gravity. He showed that the equations of motion of the 
elements of matter (incorporating the Lorentz force law) are not o nly 
derivable directly by varying the given action with respect to the 
appropriate matter variables. They are also a consequence of the 
Einstein field equations (obtained of course by varying with respect 

to gllv) together with the covariant form of Maxwell's equations (obtained 

by varying with respect to the electromagnetic four-potential _AJ. Dirac 
realised that this interdependence of the equations of motion is a 
consequence of the fact that arbitrary diffeomorphisms are dynamical 

13 See Wald (1984), p. 57. 
14 Coordjnate generality as we have deftned it corresponds to what Saunders (2001) 
refers to as "diffeomorphism covariance". 

15 Dirac (1996), section 29. 
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symmetries. (By "interdependence" we mean that not all the equations 
of motion are independent.) 

Dirac did not mention it, but the issue he was highlighting dates back 
to the investigations, between 1915 and 1918, involving David Hilbert, 
Felix Klein, Hermann Weyl and E mmy Noether, concerning the role of 
coordinate generality in the variational approach to geometric theories 
of gravitation of the sort suggested by E instein.16 It was Hilbert in 1915 
who apparently first realised that the interdependence of the Euler
Lagrange equations was a consequence of general covariance-even in 
the absence of matter fields-, and Noether in 1918 who succeeded in 

treating this and related issues with rigour and (almost) complete 
generality. It is interesting that these considerations represent the 
flip side of the underdetermination problem that had caused Einstein 
such headaches before he arrived in late 1915 at the final triumph ant 
form of his gravitational field equations-the "hole argument" mentioned 
earlier. In a sense they are one and the same problem. If the E uler
Lagrange equations associated with the Hilbert gravitational action, say, 
were all independent, then one could determine uniquely for a given 

coordinate system (x0
) the value of g 11v(x0

) throughout spacetime, given 

the values of the g11v and their first derivatives on a given spacelike 

hypersurface. But consider a different coordinate system (x' 0
) that 

happens to coincide with the first one only in the vicinity of the ' initial 
value' hypersurface. Then because of the general covariance of the 
matter-free field equations, at an arbitrary point far from the 

hypersurface, g'11
v (x' 0

) must be the same function of the variables (x' 0
) 

as g 11v(x0
) is of (x0

). But this is inconsistent with the rules of tenso r 
transformation. Thus, the equations are not all independent, and the 
predictions appear to be underdetermined.17 

Noether's second theorem-again in a generalised version- involves 
the determination of a necessary condition on the form of the lagrangian 
density Lin order that the fust-order variation of the action vanish (up 

l6 A useful historical account is found in Rowe (1999), although we are not i a 
agreement with some of the technical analysis therein. 
17 The Euler-Lagrange equations wiU have uruque solutions to the Cauchy initial value 
problem for an appropriate initial data hypersurface if they take the " normal fo rm" 
defined by Cauchy and Kovalevskaya. However, it can easily be shown that the 
condition ("identity") associated with Noether's second theorem rules out the 
normal form holding for generally covariant equations. A useful discussion of the 
underdetermination issue and its connection with Noether's second theorem is 
found in Anderson (1967), sections 4-6, 4-7. See also Brading and Brown (2001 ). 
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to a possible surface term) under infinitesimal transformations of the 

dependent and/or independent variables which depend on arbitrary 
functions of the coordinates. We are interested specifically in the 
arbitrary (generally non-rigid) coordinate transformations (5). T he 
resulting "Noether identity" demonstrates, not surprisingly, a 
dependence between the Euler expressions generated by these 
transformations. Let us suppose that the lagrangian density is some 

functional of the gllv field and a collection of matter fields <I>; -not 
necessarily scalar fields but presumably components of tensor fields
and their derivatives. Then the Noether identity can be shown to take 

the following form: 

(17) 

. 
where Eflv and E ' are the Euler expression s associated with (induced) 

variations in gflv and <I>; respectively: Eflv = 8Lj8gflv; E; = 8Lj8<1>;· The 

coefficients aa.i and b:;; are determined by the form of the Lie drag of 
. 

the fields <I>' (in a coordinate-dependent way). 

(i) Before we return to Dirac's example, let us first briefly rehearse 
the more-or-less familiar application of Noether's second theorem to 
matter-free GR. Here the lagrangian density can be written either in the 

usual Hilbert form R.j=g, or in the Einstein r-r form. In both cases we 
get the familiar Einstein tensor Gflv appearing in the Euler expression: 

(18) 

where Rflv is the Ricci tensor. Then, using the fact that the metric is 

compatible with the connection (gflv;A = 0) , we get from (17) the (twice-) 

contracted Bianchi identity: 

This identity tells us that four of the Einstein vacuum 
G = 0 are a consequence of the other six. There are two 

JlV 

of this result we wish to comment on. 

(19) 

field equations 
further aspects 

First, the result does no t depend on the form of the gravitational 
action, in the sense that in the absence of matter, metric compatibility 

(gllv;A =O) allows us to infer from (17) that E~;a= O, as long as removing 
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the matter part fro m the total action does not affect its invariance 

properties. The point of mentioning this is that it sheds light on a 

question posed in 1973 by Ehlers. 18 The question was whether a 
((reasonable" alternative to the Einstein field equations could exist which 

would still take the generic form vllV(gPO' gPO).., gPO )..y) = TllV but in which 

v:;o = 0 need not hold identically in g11v 0 (It is still being taken for 

granted that r:-n = 0 is a consequence of the matter equations of motion.) 

Noether's second theorem implies that this cannot be the case if the 
purely gravitational part of the action-for which V1-1v is the Euler 

expression-is itself quasi-invariant or invariant. 

Second, (19) is a mathematical identity in its own right: it is a 
consequence (for the metric-compatible connection) of the o rd inary 

Bianchi identity. Its validity does not depend on any properties of the 

gravitational actionP9 It may be interesting here to consider the case of 
the P alatini procedure of treating the connection and metric as 

independent in the Hilbert action: 

fnRFcd4x= Jn(r:v.o -I;o,v +J7o~v-q~o)lvFcd4X. (20) 

It is well-known that metric compatibility ( tv:~..= 0) is now a 

consequence o f the field equations generated by varying with respect to 

the connection. In this case, Noether's second theorem does not lead to 
the contracted Bianchi identity (19). We note that G. Svetlichny has 

recently shown that the Noether identities for the Palatin i procedur e 
take the covariant form: 

R~>.p £:>- - £;~>. - g~'v ;p £11V - 2( £liP g~'v) ·v = 0 
• 

(21) 

where R~>.pis the Riemann tensor, E;>- is the Euler expression defined 

with respect to variations of the connection f"t'>., and E11v is defined as 

above. We see that if the connection is no t varied independently we 
return to the special case of (17) in which the matter fields $; vanish.2o 

18 E hlers (1973), p. 42. 

l 9 We make tbjs point io case Wald's drum that "the contracted Bianchi identity may 
be viewed as a consequence o f the invariaoce of the Hilbert action under 
di ffcomorphisms" (Wald 1984, p. 456) is taken too literally. 
20 In the same work, Svetlichny has also shown that in deriving metric compatibility 

(g~v : ~ = 0) via the Palatini procedure, the usual assumption of symmetry for the 
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(ii) Let us return to the condition (17). Suppose that amongst the 

matter fields <!>; there is at least one scalar field <p. Because of the nature 
of the Lie drag of scalar fields, the b-coefficient associated with it in (17) 
vanishes. It follows that if the Euler expressions associated with all the 

remaining matter fields as well as g~v vanish-i.e. if the equations of 

motion of all fields but <p are assumed to hold-then (17) reduces to the 

form a~E~=<p.aE<i>=O. Since the gradient of <pis arbitrary at any 

spacetime point, the only solution is E~ = 0, meaning that the equation 
of motion of the scalar field must also hold, if those for all the other 
fields do. 

This simple result based on general covariance is reminiscent of the 
Dirac example mentioned at the beginning of this section. We sho uld 
stress however that Dirac's continuous distribution of charged matter, 
whose equation of motion involves the Lorentz force law, is not 
represented by a scalar field. It is not clear to us whether Dirac's result 
can be given a similarly simple underpinning with the use of the general 

Noether condition (17). 

V. Noether's second theorem and the 'response equation'. 

But Dirac himself was keen to further clarify the connection b etween 
the interdependence of the equations of motion and general covariance. 
To do so he proceeded, in his Florida lectures, to consider arbitrary 
matter fields constrained only by the requirement that their 
contribution to the total action is, like the (Einstein-Hilbert) gravitational 
action on its own, invariant under diffeomorphisms. Dirac claimed to 
show that in this case the covariant divergence of the symmetric stress
energy tensor T

11
v, defmed as above in terms of the variational derivative 

of the matter action, vanishes. (Since this relation T:11 = 0 determines the 

re-action of the metric field on its sources-the possibility of which is 
secured by the non-linearity of the theory-it is sometimes called the 
'response equation'.) It is on account of this relation, said Dirac, that t h e 
gravitational field equations are not all independent of the matter field 

. 
equations. 

connection (vanishing torsion) is not sufficient in the case of two-dimensional 
spacetime. Furthermo re, if torsion does exist, for spacetimes with two or more 
dimensions, the field equations for the metric field are the usual Einstein ones, so 
that the spacetime objects characterising the torsion are uncoupled from the metric . 
See Svetlichny (2001 ). 
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We f1nd Dirac's derivation of T:
11 
= 0 hard to follow,21 and so we will 

now sketch a reconstruction of it. The result is consistent with the 
standard account of "conservation" principles in GR, but it is s tronger 

than the usual textbook derivation of T:
11 
= 0, as we shall see. 

We met in the previous section the general Noether condition (17) 

on the lagrangian density which depends on both g11
v and arbit rary 

matter fields ct>;, in order for the action to be invariant (up to a po ssible 
surface term) under arbitrary coordinate transformations leaving the 
bounding surface of integration unchanged. Rearranging (17), we get 

(22) 

Following Dirac, we further consider the Noether identities following 
from the (quasi-) invariance of the matter part of the action. We obtain, 
again after rearranging terms: 

L; { E;aai - {E;b~) .11 } = 2{N11aga}!) ;a + glV;aN
11
v, (23) 

where N
11

v is the Euler expression associated with the matter action in 

respect of variations in g11
v . T hat is, N11v= '6LM j'6g11v=-(Fi/2)T

11
v, wh e re 

LM is the matter lagrangian density, and T
11
v is the stress-energy tenso r 

(see above). 

Metric compatibility (g11v;A. = o) allows us now to infer from (22) and 

(23) that 

(24) 

So we reach the desired result 

(25) 

21 A reader of the relevant section (Dirac 1999, section 30, particularly p. 60) might 
be forgiven for thinking that the result is obtained without appeaJ to Hamilto n 's 
principle, i.e. to any equations o f motion! This would make it, in the mod ern 
parlance, a "strong" principle. Less importantly, but still significantly, it is also 
obtained without specifying tbe form of the gravitational action, although it seems to 
require non-trivial constraints on the matter fields. We leave it up to the reader to 
decide whether the proof we give below is what Dirac really bad in mind. 
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only when we assume the validity of the gravitational field 
E

11
v = 0 . The salient difference between this argument and 

. 
equations 
the usual 

derivation of the response equation r:a = 0 in GR involving the E instein 

field equations G
11

v = KT
11

v and the contracted Bianchi identities G~;v. = 0,22 

is that the derivation here does not depend on the form of the action 

apart from the invariance properties (which now encompass quasi- as 
well as strict invariance) of both the gravitational and matter-related 

parts.23 

So we see that the combination of (a) what we might call the double 

in variance condition (namely, that both the gravitational and rna tter 
parts of the action are individually invariant or quasi-invariant) and (b) the 
validity of the gravitational field equations leads to the conclusion that the 
matter fields cannot be other than dynami cal. (In some cases, the 
response equation implies, without further ado, the full equations of 
motion of the matter fields. This is so for perfect fluid s and hence for 
dust. The somewhat more complicated situation for more general 
sources has been the subject of considerable study;24 the details need 
not concern us here.) But this conclusion depends of course on the 

appearance of gJJ.v (and possibly its derivatives, if we overlook the 
minimal coupling requirement) in the matter part of the action. And 
again it is the requirement of invariance or quasi-invariance that makes it 
at best difficult to construct this part purely out of the matter field 
variables-as Anderson stressed, the fact that "there are no free particles 
in general relativity" is tied up with general covariance.25 

VI. General Covariance and the Boundary theorem. 

We turn our attention now to another theorem 

dynamics whose roots go back to Noether herself, and 

in lagrangian 
in particular to 

22 It is remarkable that when he arrived at the field equations in 1915, Einstein was 

unaware of the contracted Bianchi iden tity and thus viewed Ta~o = 0 as a cons traint 
on the equations. Sec Pais (198?.), p. 236. The suggestion made by Ehlers (see above 
and footnote 15) is then in the spirit of E instein's 1915 interpretation of his field 

• equations. 
23 The derivation above of the response equation is a special case of what we 
elsewhere call the Weyl strategy (Brading and Brown 2001) . For a treatment of its 
origins in Weyl's 1918 unified field theory, see Brading (2002). 
24 Excellent su rveys of this issue are found in Ehlers (1973) and Torretti (1983), 

section 5.8. 
25 Anderson (1967), p. 438. 
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the contemporary work of F. Klein (1918), who was exploring the 
general covariance properties of GR with Noether's assis tance. In its 
generalised form we call this little-known result the Boundary theorem.26 

Both Noether's second theorem and the Boundary theorem apply to 
any action invariant up to a surface term under a local transformation of 
the dependent and/ or independent variables, where, to repeat, by local 
transformations we mean transformations that depend on arbitrary 
functions of space and time. The general solution to this variational 
problem is the vanishing of a certain integral, where that integral 
consists of two terms, a 'bulk' or interior term (depending on values of 
the fields in the interior of the region of integration), and a boundary o r 
surface term. Since these functions are arbitrary, we must allow for the 
possibili ty of their vanishing on the boundary. This means that the 
interior and surface contributions to the general solution must vanish 
independently, and the vanishing of the interior contribution leads to 
Noether's second theorem. The Boundary theorem follows from the 
vanishing of the boundary contribution, and it leads to three identities. 

Now let us imagine again an action that contains a pure gravitational 

part (depending on g11
v and its derivatives) and a matter part (depending 

on both g11
v and the fields, and their derivatives), the (double invariant·e' 

condition of the previOtiS section being assumed to hold. The tensor r i!V 

is as usual defined in terms of the variational derivative of the matter 

lagrangian density in respect of g11
v. The second identity of the Boundary 

theorem, ans10g out of the quasi-invariance of the matter action alone, 
takes the form 

b11va aL ba aL 
a a !IV + ia a ' g .p <l> ;.p 

(27) 

where 1: is the Noether current familiar from Noether's first theorem 
(associated with the "canonical" stress-energy tensor), and as above the 

two b-coefficients depend on the form of the Lie drags of the <!>; and g11v 

fields. We see immediately that when the equations of motion for all the 

matter fields are sa tisfied ( E ; = 0), whatever those fields may be, Fir: 

26 This or related results have appeared in various places in the literature since 1918, 
apparently largely independently. We draw special attention to Utiyama (1956, 1959), 
containing (we believe) the firs t general treatment. A detailed discussion of the 
Boundary theorem is found in Brading and Brown (2001). 
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differs from j: by a divergence term. Now from the third identity of the 
Boundary theorem, which is an antisymmetrisation condition, we can 
derive : 

, 

"::\ "::\ b~'va oL b~ oL 
0 a0

p a agllV + 1a (Jt!. . 
,p '!'I .p 

=0 
' 

(28) 

so the divergence of 1: vanishes if and only if the divergence of FiT: 
does. (Of course, in the case of flat spacetime and inertial coordinates, 

we may replace "FiT:" by "T:" in the last sentence.) Returning to the 
particular case of S EM discussed in section II, we recover (10) from (27), 
using Maxwell equations (2) and the fact that the second b-coefficient 

takes the form 8~ Aa. 

There is another remarkable consequence of the third 
(antisymmetrisation) identity related to the Boundary theorem which 
was effectively pointed out by Hilbert in 191527 and noted more recently 
in Barbashov and Nesterenko (1983). Suppose the lagrangian density LM 
for matter is a functional of a vector field B

11
, its first derivatives and g11v, 

and suppose furthermore that the matter-related part of the action is 
strictly invariant under arbitrary diffeomorphisms. Then the third 

identity yields 

(29) 

This implies that the derivatives of B
11 

can only appear in LM in the 

combination B
11
,v- Bv.Jl' Barbashov and Nesterenko stressed that this 

• 

requirement is natural given the requirement of general covariance and 
the fact that the tensor B

11
,v- Bv.Jl is unaffected when the derivatives 

therein are replaced by covariant ones. But suppose that we introduce 

the further requirement that LM be a functional only of g11
v and the first 

derivatives of B
11

, and not of B
11

• Then the covariance of the matter 

equations of motion under the local gauge transformation 

' B
11 
~ 811 = B11 + a119, 

for an arbitrary scalar field 8, is assured. Under certain conditions then, 
we see the emergence of a connection between general covariance and 

27 Hilbert (1915). ln this connection, see the useful discussion in Sauer (1999), section 3.3. 
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• • • • 

local gauge symmetry. Indeed, the simplest 
with these conditions is arguably (1 )! 

tnvanant act:1on consisten t 

VII. Eins te in's struggle with general covariance 

Einstein's own struggle with general covariance had two main 
components. The first was overcoming the threat of underdetermination 

which arose in the hole argument-an episode well-rehearsed in the 
historical and philosophical literature. We will say no more about it 
except to mention, a little later, that its solution seems to have provided 
for E instein no t just the removal of a conceptual obstacle related to 
general covariance but a positive, extra motivation for the principle. The 
second component was overcoming the challenge of Kretsch mann, and 
specifically the vacuity charge. It is well-known that E instein (1918) 
addressed this issue, and argued that there is good reason why general 
covariance had proved to have "considerable heuristic force, in his own 

work on gravitation. This reason has to do, once again, with a n 
interpretation of the principle that transcends Kretschmann's concerns. 
The principle fo r Einstein, which he reiterated decades later in his 
Autobiographical Notes,28 was not just that a theory should have a 
coordinate general formulation, but that it be such that this fo rmulation 
is the "simplest and most transparent, one available to it. 

There has been debate in the literature as to precisely what Einstein 
meant h ere.29 When he proceeds to cite the case of Newtonian 
mechanics and gravitation as being ruled out "practically if not 
theoretically, by this principle, it seems that the damage is being caused 
in the theory by the absolute nature of the flat affine structure of 
spacetime as well as of the metric structure of both space and time, all of 
which allows for significant simplification of the dynamical de scription 
when restricted to global inertial coordinate systems. Was then E instein 
essentially ruling out the existence of absolute objects-entities which 
act on other objects but which are not acted back on of a kind that 
would open up the possibility of preferred coordinate systems relative 
to which some or all the laws of physics would take an especially s imple 
form? Explicit rejection of absolute objects would certainly become a 

28 Einstein (1970), p. 69. 
29 For a help ful discussion see Norton (1993), sections 5.2 and especially 5.5. 
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feature of his 1920s writings.30 If this was the core of Einstein's response 
to Kretschmann in 1918, it was essentially an anticipation of the view of 
Anderson and Trautman that has already been referred to in this paper, 
and that was also defended in the texts by Misner, Thorne and Wheeler, 
by Wald and by Ohanian and Ruffini.31 Q. Barbour, who extols Einstein's 
reply to Kretschmann,32 has made a compelling case for the prima facie 
startling claim that Newtonian theory itself is, when formulated generally 
covariantly, several distinct theories, depending on the constant 
numerical values assigned to the energy and angular momentum of the 
entire universe. These different theories have differing degrees of 
simplicity, the greatest simplification by far being obtained when the 
mentioned constants are zero. It is however far from clear to us whether 
even this version of Newtonian theory -whose conceptual merits were 
illuminated so brilliantly by Barbour and Bertotti (1982)33-would have 
satisfied Einstein's 1918 principle above.) 

But there may have been more to Einstein's reasoning than this. Is it 
conceivable that a violation of the simplicity and transparency criterion 
might also be caused by something other than the existence of absolute 
objects? Einstein appears to have thought so until late 1916. 

We mentioned in section III that the fust abbreviated version of the 

r-r action that Einstein proposed for gravity was defined relative to 

those special coordinate systems for which FK = 1. In his important 

1916 review paper, Einstein promised an "important simplification of 
the laws of nature" produced by the choice of these coordinates, and 
towards the end of the paper he considered that he had indeed achieved 
a "considerable simplification of the formulae and calculations", and all in 
a manner consistent with the principle of general covariance.34 Had 
Einstein stuck to this line, he could not have consistently answered 
Kretschmann in the way that he did in 1918. But he did not stick to it. 
In November 1916, Einstein wrote to Weyl saying he had come to the 

30 See particularly Einstein (1924), pp. 15-16 of the English translation. For further 
discussion of Einstein's commitment to the action-reaction principle, see Anandan 
and Brown (1995). Ohanian and Ruffini (1994), p. 374, make a useful distinction 
between absolute entities which vary under coordinate transformations and those 
that don't-it being only the former that are ruled out. 
31 See Misner, Thome and Wheeler (1973), section 12.9; Wa1d (1984) p. 57; Ohanian 
and Ruffini (1994), section 7 .1. 

32 See Barbour (2001). 
33 For a recent philosophical analysis of this paper, see Pooley and Brown (2002). 
34 See Einstein (1916a), pp. 130, 156 of the English translation. 
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view that no restrictions on the choice of coordinates should be used in 
the action principle approach to GR.35 The reasons he gave were ease of 
calculation and the transparency of the connection between general 
covariance and the conservation laws in GR This switch of thinking on 
Einstein's part deserves more analysis,36 as it suggests that the criteria of 
simplicity and transparency that he used in his 1918 reply to 
Kretschmann may have been more subtle than is commonly thought.37 

Vlll. General covariance as a gauge-type symmetry 

Our final remarks, however, are stimulated by other aspects of 
Einstein's treatment of the principle of general covariance in the 
mentioned 1916 paper. First, any reader must be struck by the 
multiplicity of reasons that Einstein adduces in favour of the principle. 
He cites Mach's principle and the weak equivalence principle in section 
2, the non-operational significance of coordinate differences for rotating 
frames as well as the coordinate-independence of physical happenings 
(the 'point-coincidence' argument familiar from his treatment of the 
hole problem) in section 3-all in justification of general covariance. 
Einstein's instinctive feel for the importance of the principle was still 

clearly outstripping his ability to articulate its fundamental motivation. 
Secondly, despite the multiplicity of arguments, it appears that E instein 
is consistently vie'\ving the principle as an "extension" of the relativity 
principle shared (as he correctly says) between classical mechanics and 
the special theory of relativity (SR). This view in particular has attracted 
considerable criticism-even, later, from Einstein himself.38 

One such critic was Roberto Torretti, who in his monumental 
Relativity and G eo me try stressed that there are "considerable 

35 See Einstein (1998). 

36 Some useful remarks concerning Einstein's use of coordinates satisfying the above 
determinant condition are found in Janssen (1997), pp. li-lii. 
3? Einstein's initial flirtation with privileged, simplifying coordinate systems in GR is 
a precursor of V. Fock's defence, forty years later, of the special status of what he 
called " harmonic" coordinate systems, i.e. those satisfying the de Donder relations 

( ~ g"v)"' = 0 and relative to which the Einstein field equations take the "reduced" 

foon (c.f. Wald 1984, p. 261). Details of Fock's argument and its critical reception are 
found in Norton 1993, section 9.1. This issue deserves more discussion in the 
philosophical literature. 
38 Torretti cites a draft letter of Einstein to Sommerfeld of 1926 to this effect (Torretti 
1983, note 4, p. 316). 
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• differences of meaning and motivation" separating general 
from the relativity principle. Torretti argued that the former 

covanance 

can not be 
a constraint on theories in the manner of Lorentz covariance, on a 
number of technical grounds. But his principle argument was that the 
inertial coordinate systems involved in SR have a " f1Xed metrical 
meaning" and the invariance group of transformations is "a 
representation of the group of motions of the underlying flat 
spacetime". The structure of the set of spacetime coordinate 
transformations involved in general covariance, on the other hand, 

betokens only the differentiable structure of the spacetime manifold, but has 
nothing to say about the spacetime metric or its group of motions (which if 
the Riemann tensor varies freely from point to point, is probably none other 
than the trivial group, consisting of the identity alone).39 

Now it is surely a sign of the confusing nature of this whole issue that 
Anderson used essentially the same point to argue in favour of the view 
that general covariance is a symmetry in the same mould as Lorentz 
covariance! In SR, Lorentz transformations are 'symmetries' for 
Anderson in the sense that they preserve the absolute spacetime 
structure-the Minkowski metric. As the absolute structure is rem oved 
in the transition to GR, the symmetry group deflned in this way now 
coincides with the covariance group.40 (This accounts for Anderson 
referring to the principle as "general invariance", rather than "general 
covariance";41 it has of course gone beyond mere coordinate generality, 
as we have seen.) Again, what is going on here is essentially the same as 
what part of Einstein's reply to Kretschmann may have been: just as the 
relativity principle prohibits the existence of a proper subset of the 
inertial frames in SR relative to which the fundamental laws of the non-
gravitational 
of absolute 
simplifying 
gravitational 

interactions take an especially simple form, so the absence 
objects in GR prohibits the existence of privileged 

coordinate systems Qocally inertial or otherwise) for 

physics. 

But our instincts are more with Torretti. Our reason this time is not 
connected with the Noether theorems. If anything, these treat Lorentz 
transformations in SR and diffeomorphisms in GR essentially on a par: as 

39 Torretri (1983), p. 154. 

40 See Anderson (1967), pp. 87. 
41 See Anderson (1967) section 10-3. Anderson's terminology is also used by 
Trautman (1966) and Ohanian and Rufftni (1994), p. 374. 
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Noether symmetries of a given action. But before we go on, a word of 
clarification is in order. 

We should not be comparing general covariance in GR with the 
relativity principle, say, in SR with its flat spacetime. We should be 
comparing general covariance with the familiar symmetries that emerge 
in the special relativistic limit of GR, i.e. the local structure of GR that is 
perfectly consistent with the existence of curvature. In this case, we 
immediately see a difference between the 'symmetries' under 
discussion. General covariance is an exact symmetry of gravitational 
physics; the traditional spacetime symmetries like the relativity 
principle are not. They hold approximately: more specifically they are 
concerned with the form of the laws of the non-gravitational interactions 
appropriate to 'small' regions of spacetime in which curvature can be 
neglected. But this is not the distinction we are after. 

What in our view is lacking in many of the discussions of general 
covariance is recognition of a fact that does not appear directly in the 
relevant mathematical analysis. The essential difference between gauge
type symmetries (of which general covariance is an instance) and the 
usual continuous symmetries associated with the tangent space structure 
of spacetime (such as the relativity principle and the homogeneity of 
space and time) is that only the latter have an active interpretation in 

terms of isolated subsystems of the universe. 

We hasten to clarify that the literature on the hole argument is full of 
reference to "active" diffeomorphisms, where it is the arrangement of 
the fields on the spacetime manifold that is altered, rather than the 
assignment of coordinate labels to events. Indeed the hole argument can 
hardly be formulated without such a notion. But the fundamental I e s son 

of the hole argument is that this notion of "active" is purely 
mathematical.42 What we have in mind, in contrast, is in the spirit of the 
Galilean ship experiment, where a laboratory is physically boosted in 
relation to some fixed part of the environment. So one essential aspect 
of this experiment is that not everything in the universe is being 
'dragged' by the transformation. The result is a 'selective' 

transformation-but one that can be seen, and which may in principle 
affect the form of the laws of non-gravitational physics pertaining to 
processes occurring in the laboratory. The other important aspect is 

42 As Anandan aptly put it, the solution of the hole argument «abolishes the 
distinction between passive and active general covariance"; c.f. Anandan (1996), p. 
14. 
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that the relativity principle etc. involve rigid transformations, which 
when the spacetime region of interest is approximately flat are actively 
implementable in practice. 

The case for viewing the traditional symmetries as tied up with the 
possibility of rigidly translating, rotating, boosting etc. isolated 
'laboratories' -proper subsystems of the universe-containing further 
subsystems undergoing mutual interaction has been made in detail 
el sewhere43 so we will not elaborate further here. 
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