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HUGO DINGLER'S 
·PHILOSOPHY OF GEOMETRY 

ROBERTO TORRETTI 

1. The Connection between Geometry and Reality 

Hugo Dingler (1881-1954) graduated from Gottingen with a 
dissertation on differential geometryi at a time when Felix Klein, 
David Hilbert and Hermann Minkowski taught in that university. He 
had studied earlier with Wilhelm Rontgen in Munich and, while at 
Gottingen, he also attended Edmund Husserl's courses on philoso
phy. 

During twenty years he taught physics in Munich, first, from 
1912 to 1920, as Privatdozent at the Technische Hochschule, later, 
from 1920 to 1932, as Extraordinary Professor at the University. 
However, he made no contributions to the exciting physical 
discoveries of the time. His numerous books and articles dealt almost 
exclusively with what we now call foundational problems. Moreover, 
they did not discuss the foundations of the new theories of 
Relativity and Quanta, but sought to consolidate the old physics, 
based on Euclidean geometry and Newtonian dynamics, into an 
impregnable and everlasting system. 

In 1932, Dingler was appointed to the chair of Philosophy at the 
TH Darmstadt. Two years later he was dismissed from it "on political 

1 Dingler (1907). A list of Dingler's publications will be found in J . Willer, 
Relatiuitá"t und Eindeutigkeit, pp. 205-209. Willer 's book is the most complete 
monograph about Dingler in existence, but 1 have found it not al toge ther reliable 
on sorne points. In my opinion the best critica) study of Dingler 's epis temology 
is the introduction by K.Lorenz arid J.Mittelstrass to Dingler , EW2. (Abbreviated 
references are decoded on pp . . 127 ff.) Wagner (1955/56 ) is a useful sketch, but 
Krampf (1956) and (1971), like Krampf's book, PHD, are too partisan. On the 
specific subject of geometry, A.Kamlah (1976) is excellent, though its main 
emphasis lies rather on P.Lorenzen 's reformulation of Dingler 's theory (see 
below, pp. 116 ff.). Literature in English is very scarce. 1 am acquainted only with 
a somewhat misleading article by H.Sandborn (1952 ) and the encyclopedia 
articles in the Dictionary of Scientific Biography and in Edwards' Encyclopedia 
of Philosophy. .. 

Diálogos, 32 (1978), p. 85-128. 
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grounds" stemming apparently from the publication of a book on 
Jewish culture fifteen years before.2 He subsequently sought to 
make amends for his un-German behavior by writing pro-Nazi trash, 
hut- as it generally happens to intellectuals who fawn on the leaders 
of a totalitarian party- he labored in vain, for he never succeeded in 
ingratiating himself with the new masters of his country. Dingler's 
political antics are probably no less responsible than his negative 
stance towards modern physics for the almost total oblivion into 
which his work fell outside Germany ahd Italy after the Second 
World War. 

The persistent aim of Dingler's philosophical endeavors was to 
vindicate and secure our exact knowledge of nature. He carne to 
think of it as an ever growing system, continually bringing new 
patches and aspects of reality under its sway, but resting on the 
indestructible, inalterable foundations provided by the four " ideal 
sciences" of logic, arithmetic, geometry and dynamics. Both histori
cally and systematicaily, geometry played a key role in this 
construction. Euclid 's Elements were for a long time the paradigm of 
exact science, until the 19th century discovery of alternative systems 
of geometry upset the traditional notions of rationali ty and brought 
the foundations of knowledge into confusion. This discovery, more 
than any other historical event, motivated Dingler 's own critical 
enterprise. In his system of science, geometry, as a discipline at once 
"logical" and " manual", bridges the chasm between thought and 
reality, paves the way for physics and provides a cue for understand
ing the true nature and scope of this science. 

Dingler discusses geometry and its foundations in many of his 
books and in severa! articles. Two books are specifically devoted to 
the subject: The Foundations of Applied Geometry (GAG, 1911) 
and The Foundations of Geometry (GG, 1932).3 The former deals 
with it in the setting of Dingler 's earlier epistemology and provides a 
sui table introduction to his work. We shall examine it forthwith. The 
latter will be studied in Section 4. 

The discovery of non-Euclidean geometries put an end to the 
illusion that geometrical truth can be established by sheer ded uctive 
reasoning. lnfinitely many internally consistent yet mutually incom
patible axiomatic systems can be devised that bind what are 
traditionally regarded as geometrical words into seemingly geometri-

2 Oingler, Die Kultur der Juden. Eine VNsohtwll~ zwischen Reli~ion wzd 
Wissenscha{l. Leipzig: 1919. 

3 Scc a lso lhc m·licles: Dingler (1907 h ), (19 20b), (1925), ( 1 93 - ~ ). (1935), 
(195 5). 



cal propositions. But each of these systems is by itself an empty 
"logical edifice" (lagisches Gebiiude), 4 whiéh does not deserves the 
name of geometry unless it is actually "connected with reality." 

The connection would be ensured for a particular "logical 
edifice" if its axioms could be said to provide an accurate description 
of actual facts. The "logical edifice" would then express "the true 
geometry of our world." This presupposes, however, that the 
primitive or undefined terms that occur in those axioms be assigned 
definite physical referents, which is not such a simple matter as narve 
empiricists are wont to believe. Take, for example, Hnbert's axiom 
system for Euclidean geometry. Its axioms speak about three kinds 
of entities called points, straight lines and planes. What on earth are 
these entities? One might feel ten1pted to say that a (Euclidean) 
straight line is any object satisfying all the conditions that Hilbert's 
axioms prescribe for straight lines. But surely the said conditions do 
not even make sense unless one knows already what are points and 
planes, and what is to be understood by incidence, betweenness and 
congruence. We see, by the way, how silly it is to claim that an 
axiom system such as Hilbert's "implicitly defines" its primitive 
terms, when as a matter of fact it does not even supply fixed criteria 
for picking out their referents. 

Though Dingler, as we shall see, eventually succumbs in GAG to 
a temptation akin to the one we have just rejected, when discussing 
the referents of Hilbert's primitives he comes up with a different and 
very important idea. He recalls that straight lines and planes are being 
daily constructed and used by architects and masons, astronomers 
and engineers. These everyday straights and planes are not usually 
tested for their conformity with Hilbert 's axioms but are immediate
ly acknowledged as such if they agree, within the accepted range of 
tolerance, with other previously given straights and planes, embodied 
in di verse tools and instruments ( e.g. rulers, drawing-boards, the 
carpentry tool called "plane"). They all derive ultimately from 
prototypes made and kept in the factories of precision instruments. 

Prototype planes are originally produced according to the 
following procedure : Take three hard bodies A,B,C and rub them by 
turns, pairwise, against one another that is, rub A against B, B 
against e, e against A, A against B again, etc.- until three polished 
surfaces are obtained, each of which fits exactly the other two. The 
surfaces are viewed as more or less perfect planes, according to the 

4 Dingler, GAG, p. 5. The expression is definerl on GAG, p.44, as 
syno nymous wilh axiomatic theory. 
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degree of exactness with which they fit each other. A prototype 
straight line can be obtained by making two such plane surfaces with 
a common edge. The procedure described constitutes what Dingler 
calls an "empirical defini tion" or "realization ,, of the plane-and, 
indirectly, of the straight line. 5 The name is justified insofar as any 
surface ¿ will be regarded as plane if a prototype plane n can be 
applied on it and made to slide over it, within its boundaries, in any 
direction, while every part of n remains in full coincidence with 
sorne part of ¿ . Also, if :E fi ts any part of a plane surface. (Similar 
statements concerning straight lines will be easily made by the 
reader.) Dingler emphasizes the peculiar value of this method of 
definition. 

1 ask someone : What is aplane. He does not answer a word, he does no t 
give a logical definilion of the plane, expressed througb concepts: 
neither does he produce an object that has a plane surface. while 
pointing at the latter [ .. .. .. ]; but he takes three rigid bodies and starts 
the process of making a plane that was described abO\·e. If he had just 
pointed at a prototype plan e [Nonnalebene] 1 could not ha,·e known 
that its colour or the minar irregularities of its texture, etc. do not 
belong to it as such. But through the method chosen by him 1 know 
this at once, 1 ha ve at once "a notion" of what a plan e is, or rathe.r of 
what it ought to be.6 

It is clear that we can only get a notion of the plane from 
watching our man making one if we understand what he is doing i.e., 
if we grasp the rule that guides his behavior. We must be able to see 
e.g., that wearing a green jacket is not prescribed by that rule. But 
Dingler believes that rules of human behavior are more or less 
immediately intelligible to us ( while natural kinds and laws are not ). 
This is a point he sets great store by in his mature philosophy: 
generality can never be attained by merely opening our eyes and 
unbiasedly contemplating the events of nature. Universals enter our 
world and shape our surroundings only through our understanding of 
rules and our acting by them. Dingler does not pursue the matter any 
further in this book. 

Another question that he fai ls to discuss, though it is suggested 
immediately by his exposition, concerns the consistency of the 
"empirical definition" of the plan e. We do not d oubt that a surface 
that is plane when measured up against a prototype manufactured by 

5 Dingler , GAG, p.l9. 
6 Dingler , GAG, pp. 22 f. 
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the aboYe procedure from three bodies A. B and e will also turn out 
to be plane when compared with a prototype obtained from three 
other bodies A: B · and e: Does our certaintY rest onh· on an 

• • 

empirical regulari ty. ind uctively ascertained? Or do es it stem from 
sorne deeper necessity '? It is obvious at any rate that sheer 
conceptual analysis cannot guarantee our expectations.7 \Ve shall 
return to the matter later on, " ·hen dealing with Dingler·s GG. where 
it looms larger than in GAG. 

In the book we are now examining. "empirical definitians ... 
natwithstanding their great philasophical interest and thei r un
questionable practica! usefulneSS 1 are ul timately ex el uded from the 
foundations of applied geometry. Dingler notes that b~· picki ng out 
the referents of " plane" and .. straight line" we do not yet succeed in 
setting up a connnection between realit.y and a .. full .. system of 
geametry in which congruence and distance are defined. Far this we 
need, accarding to him, a real ization af the rigid body. Dingler does 
not even consider the possibility of a physical geometry in which 
rigid bodies are lacking. (He daes in fact mentían Riemann 's 
condi tian af " independence of lines fram the way they lie in space" 
but does nat dwell on its significance.) But he is well aware that their 
existence is compati ble with any geometry of canstant curvature. 
Depending on the act ual deportment af rigid bodies, the "geametry 
of our warld " m ay be Euclidean or hyperbolic, spheri cal or elliptic. 
Evidently, one will be able ta knaw how rigid bodies behave anly if 
one can tell what real bodies are rigid. Dingler is never t.ired af 
emphasizing that this is samething that one cannot learn from 
experience. In order to establish that a given body is rigid we must 
measure the distances between its paints and verify that they do not 
change as the body moves. But in arder to measure distances we 
must have an acknawledgedly rigid body at our disposal. A 
prototype rigid body appears thus to be necessary for establishing a 
cannection between a metric geometry and reality. Dingler observes 
that if the plane and the straight line have been already introduced as 
above, the construction of the ri gid body must. take their "empirical 
definition" into accoun t, for planes and straights must be preserved 
in every rigid motian. This dependence of the full concept ion of the 
rigid body on thal of the plan e and the straigh t line is responsible, 
according to Dingler, for the complicated, seemingly unintuitive 
form of Euclid 's fifth pos tul ate. 9 On the other hand- he says- there 

7 Cf. Bopp (195H), p.G-1 . 
a Oinlger, GAG, p.36. 
9 Dingler, GAG, p. 35. 
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exists the alternative of introducing the rigid body directly first, and 
then defining the plane and the straight line by means of it.1 o Such 
is the method preferred by him in GAG. If it could be successfully 
carried out in the way he proposes, it would automatically yield a 
positive solution to the consistency problem we raised above 
regarding the "empirical definition" of the plane. (This might be the 
reason why Dingler ignores this problem in GAG-it is hot worth 
mentioning, if his theory is correct.) 

2. Th.e rigid body 

Dingler's "Foundations of Applied Geometry" of 1911 rest on 
the theory of science developed a year earlier in a small book on the 
Limits and Aims of Science (GZW). According to Dingler science has 
a double task, namely "(a) to explain, to make understandable 
whatever exists [ ... ] (b) to dominate reality effectively, that is, to 
actually produce definite things which did not exist previously. "11 
Fulfilment of this task in any specific domain of reality must begin 
by pointing out the "elementary phenomenon" (Elementarvorgang) 
into which all phenomena of the domain can be analyzed in thought 
and out of which they can be built in fact. In stark opposition to 
19th century empiricism, Dingler contends that such elementary 
phenomena cannot be discovered inductively but must be fixed for 
each field of research by a rational choice. This choice is guided by a 
principie that Dingler, after Mach, calls the Principie of Economy: 
the elementary phenomenon is the simplest conceivable phenomenon 
in the field.12 Scientific theory teaches how complex phenomena are 
constructed from the elementary phenomenon. lf actual practice 
deviates from our theoretical predictions, the anomalies are attri
buted to unforeseen perturbations following a method Dingler calls 
Exhaustion.1 3 Little by little science succeds in accounting for all 

1 o Dingler, GAG, p.33. The reader is presumably aware of the fact that 
19th century mathematicians had succeeded in characterizing Euclidean geome
try and the classical non-Euclide~ geometries by their respective groups of 
motions. Cf. Klein (1871), Poincaré (1887), Lie (1890). 

11 Dingler, GAG, p.48. Tbe theory of science sketched in Dingler, GZW, is 
presented with greater detail in the second chapter of GAG. 

12 Thus, for e:xample, the elementary phenomenon of optics is illuminat ion 
from a point-source. (Dingler, GAG, pp.61 ff.) 

13 Exhaustion may be regarded as the mainstay of Dingler 's methodology. 
Without it "a strict systematic and orderly procedure in the formation of 
physical concepts and their realization" would not be possible (Dingler, MP, 
p.l45; cf. pp.171 ff.) The following passage gives the gist of it : " [We demand 
that] all our laws have absolute and lasting validity. What shall we do if we meet 
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such perturbations with ~ncreasing accuracy, that is to say, in 
explaining them in tenns of elementary phenomena.14 GAG 
describes the rigid body as the elementary phenomenon of geome
try.1s The requirement of maximum simplicity is achieved by 
pa;tulating that the rigid body obeys the laws of the simplest 
conceivable geometrical system, namely, the Euclidean system. 

Thus if we see sorne real thing that changes its spatial appearance, we 
ask: ls this change a geornetric change? We obtain the answer by 
obseruing whether the thing changes in accordance with the laws o{ 
Euclidean geometry (of Euclidean rnotion). lf such is the case we call 
this thing a rigid body. If it is not the case, sorne perturbing 
circurnstances are to blame for it and the extent of their influence is 
measured by the rnagnitude of the thing's deviations frorn the laws of 
Euclidean geornetry .16 

Dingler's meaning will become clearer as we discuss sorne of the 
difficulties encountered by bis doctrine and examine the emendation 
by which he believed he could overcome those difficulties. First of 
all, we note that natural phenomena do not of themselves fall into 
neatly distinguished domains or fields of study, but are roughly 
parcelled out into them by men. lf, following Dingler, we correlate 
each field of study with an elementary phenomenon it makes more 
sense to characterize the former as the set of all phenomena that can 
be analyzed into the latter, rather than to define the latter as the 
ultimate "building block" of phenomena in the former. This 
approach implies, of course, that a particular phenomenon may 
belong to two or more fields and be given a different explanation in 
each in terms of their respective elementary phenomena. Such 
inconsistencies can only be avoided if fields of study are linearly 
ordered and science is built stepwise so that the theory of the prior 
and more fundamental fields can never be contradicted by that of 
the posterior and less basic ones. Sorne such idea of science is found 
airead y in Dingler's first book (GKTW, § 4) but it is not fully 

any objects, t.o which a law should apply, but which are not themselves 
realizations of the law? In such case we will nevertheless uphold the law by 
ascribing every deviation from it which the objects exhibit to other circums
tances or causes (so called perturbing circumstances). This is the principie o{ 
exhaustion." (Dingler, GP2, p.38: see also MP, pp.146, 282 f.) The method of 
exhaustion is of course strongly reminiscent of the much decried method of ad 
hoc hypotheses; see below, pp. 93 f. , n.19, and p. 124. 

14 See t he eloquent passages in Dingler, GZW, pp.73, 81. 
15 Dingler, GAG, p .73 ; cf. pp.89,116. This perplexing terminology was 

subsequently abandoned by Dingl er. 
16 Dingler, GAG, p.132. 
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developed until much later, in The Foundations of Physics (GP, first 
edition 1919; second, much revised edition, 1923) and in Physics and 
Hypothesis (PH, 1921 ). Exact science is described in these books as 
proceeding from a prescientific situation, in which no valid general 
statements can be made, toward a practically unattainable but 
indefinitely approachable goal, in which each particular statement of 
fact would be understood as an instan ce of sorne universal law, 
inferrable from a few simple axioms. This edifice of exact scienc-e,
whose foundations were laid by Euclid and Newton, is called by 
Dingler "the pure synthesis" (subsequently: "the System"). Dingler 
contrasts this slowly growing but rock-finn core of human know
ledge with the peripheral, more volatile forms of scientific enterprise. 
Here fast advances are made by proposing hypotheses that are 
experimentally tested in the manner explained in standard text
books of scientific methodology. But no meaningful tests can be 
carried out, no reliable data can be extricated from the wavering, 
drifting store of human perceptions, unless we can resort to a firm, 
unambiguous theoretical framework, regulating the construc
tion of scientific instruments and the interpretation of their readings. 
According to Dingler, such a framework can only be supplied by the 
" pure synthesis," whose results can never therefore be undermined 
by experiment or contradicted by a viable scientific hypothesis. 
Consequently, the several components of "the System"-logic, 
arithmetic, geometry, mechanics- can be built by postulation and 
exhaustion, in the way described in GAG and cursorily sketched 
above, provided only that each discipline is careful not to contradict 
the preceding ones. Geometry, ever faithful to logic and arithmetic, · 
need not fear a clash with other scientific theories, for all the rest are 
subordinate to it. Like a majority of his contemporaries, Dingler 
believed that every experimental measurement involves a measure
ment of distance and consequently depends on the accepted 
geometry and specifically on the standard of rigidi ty. The difficulty 
mentioned at the beginning of this paragraph does not therefore exist 
for geometry. 

In fact, the method of exhaustion, by which experimental results 
that appear to deviate from the theory are interpreted as the effect 
of uncontrolled perturbations and classed as "errors," is beautifully 
illustrated in the field of applied geometry. Take the case of 
surveyors. Dingler quotes the following pasage from Jordan's 
Handbuch der Vermessungshunde: · 

lf the three angles of a triangle are measured with equal precision, there 
will arise, because of errors of measurement, a difference between the 
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angle sum and 180°. This difference is distributed by equal parts 
between the three measured angles.l 7 

· Clearly, surveyors do not look upon Euclidean geometry as an 
empirical science, for they correct their experience by this geometry. 
In the same book (PH, pp. 26 ff. ) and in a separate ar ticle on "The 
rigid body" (1920a), Dingler takes up the question of the manufac
ture of rigid bodies in the factories of precision instruments. Rigid 
bodies sold around the world to scient ists and industrialists are made 
and judged according to sorne ultimate standards of rigidi ty t hat 
Dingler calls autogenous rigid bodies. The latter are required to 
comply with Euclidean geometry . Suppose now that the exactest 
available autogenous rigid body appears, on examination, to violate 
the laws of that geometry. Suppose all the more obvious sources of 
error have been eliminated. What can one do under such circums
tances? Dingler says that one can either (1) regard the fact as the 
experimental proof that real space is non-Euclidean or (2) ascribe the 
deviation from Euclidean geometry to an unknown cause or to an 
unknown com bination of known causes. Dingler pro poses with 
tongue in cheek that a questionnaire be sent to the better kn own 
manufacturers of precision instruments asking them what their 
reaction would be if the above carne to pass. He is quite certain that 
they will all in practice follow alternative (2) even though, if they 
have been reading too much philosophy of science, they might not 
confess it openly.1a Moreover, he is certain that the manufacturers 
will not hesitate to use Euclidean geometry in all the calculations 
required for checking the propert ies of the autogenous rigid body. 
Dingler believes that, living as we do in a vast and broadly unknown 
world, we are under no obligation to determine the true cause of the 
anomalous (i.e. counter-Euclidean) behavior of a body and to correct 
the anomaly within a fixed length of time. On the other hand , it is 
clear that, if such anomalies arise, there will never be any dearth of 
hypotheses for explaining them. Dingler concludes that the rigid 
body is manufactured in the factories that supply all scientific 
laboratories and observatories with their research equipm ent "not 
empirically but by exhaustion of Euclidean geometry".l 9 Hans 

17 Jordan, op. cit. , voi.II, 8th ed. (Stuttgart, 1914), p .22, quoted in Dingler, 
PH, p.41n. Dingler also remits to vol.l of Jordan's work (6th ed., 1910), pp.32 
and 208 f. 

18 Dingler (1920a), p.490. 
19 Dingler (1920a), p.492. See also Dingler, GP2, p.140. In GP2, p. 136, he 

bids us take a look at a worker making a fine precision instrum ent. " He 
continually resorts to geometrical controls drawn from Euclideanl.[eometry. He 
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Reichenbach objected to the proposed geometrical definition of the 
rigid body asserting that the latter can also be defined dynamically, 
namely as a closed system, in which case it is an open, empirical 
question whether rigid bodies are actually Euclidean or not.2 ° For 
Reichenbach a closed svstem is one that is no t subject to the 

• 

influence of external dif ferential forces2 1 and he apparently thought 
that such systems can be detected by mutual comparison, without 
having to resort to a previously established geometry. But, since no 

• 
bodv is ever totally immune to externa} differential forces for a 

• • 

significant length of tin1e, if Reichen bach s cri terion of rigidity is 
adopted the question that must be answered in actual practice is not 
which bodies are rigid, but which are n1ore nearly so, i.e., which 
bodies are subject to a smaller deformation due to t he presence of 
such forces. According to Dingler the magnitude and sense of the 
deformation suffered under given circumstances by different bodies 
can only be determined with the aid of the geometrical standard of 
rigidi ty. This standard provides the ' ·zero-point" to which all 
comparisons of shape m ust be referred. 2 2 

One can hardly conceive a stronger defense of the conventionality 
of geometry. But if Dingler is right any geometry or at any rate any 
three-dimensional geometry of constant curvature can be likewise 
upheld by exhaustion. It is merely a matter of choosing its motions 
as characteristc of rigidi ty. \Vhy then Dingler's unmitigated prefe
rence for the Euclidean systen1? We read in GAG that ··¡t is generally 
agreed that Euclidean geometry is the simples t.' 2 3 Dingler, however, 
does not just accept it from hearsay, but he seeks to prove it. In 
several occasions he gives different arguments for the ma.ximal 
simplicity of zero-curvature geometry which, if valid, would of 

demands lhal lhe en<l surfaces of a screw remain parallel lo ilself, lhal all circles 
and reclangles satisfy certain well-known J.!eomelrical relalions, ele. If he nolices 
in his device anv devialions from lhese rules he will nol claim lhal he has found -lhe empírica! proo f of non-Eucliclean gcometry but he will say thal ' lhere is 
something wrong ' a nd he will manipulate his dcvice unlil il is 'riJ!hl ', i.e. unlil 
the greates l possible agreement wilh Euclidean geomelry is achieved. Bullhis is 
precise! y lhe m elhod o{ exlwuslio ll .. . " 

2 0 Dingler ( 1922), p. 52. 
2 1 J\ccording lo Reichenbach , a dif{erenlial or pllysical force is one which 

acls differenlly o n di fferenl boclies ancl can be neutralized by shielding.¡ he 
conslrasls such fo rces wilh universal or m elric forces, which act equally on all 
boclies and are nol s lopped by insulators. Reichenbach mainlains lhallhe latte r 
can a lways be equaled to zem by suitably adjusling geomelry. (Reichenbach , 
PST, pp. 10 ff.) 

2 2 See Dingler, GP2 , pp. 133, 141 f. 
2 3 Dingler, GAG, p.132. 
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course, by the Principie of Economy, uniquely prescribe the choice 
of it. 

In GAG and again twenty years later (Dingler (1934)) he claimed 
that Euclidean n-space is simpler than every other n-dimensional 
Riemannian manifold because it alone possesses a chart u with 
coordinate functions ui, .... un, that fulfils the following require
ment: for every integer i (1 ::; i ~ n) and every pair of real numbers a 
and b in the range of ui, the mapping that assigns to each point P on 
the hypersurface ul=a the point P ' on the hypersurface ut=b which 
has, except for the i-th coordinate, the same coordinates as P, is an 
isometry of the former hypersurface onto the latter. 1 fail to see why 
a Riemannian manifold that meets this condition should in any sense 
be simpler than one that does not. Moreover, Dingler's proof of bis 
alleged characterization of Euclidean space is defective. He argues 
more or less as follows: Let the components of the metric tensor 
relative to chart u be designated by gJ k ( 1 ::; j, k ~ n ). u will meet the 
stated condition if and only if the line element gJ k duJduk is 
identical for every hypersurface u'= const. This implies that the gJ k 
do not depend on u1, so that 

( 1) a gj k = o ( 1 < · · k < ) _ Z,J, , _ n 
a u' 

Since this must hold for every value of the index i the components 
gJk of the metric tensor (relative to the chart u) must be constant. 
This can hold only if the manifold is Euclidean. The flaw in Dingler's 
argument is obvious. Take two hypersurfaces ut=a and ul=b, and let 
their line elements be represented respectively by g1kduJduk and 
g1kdu tduk Since dui=O on either case, differences between g11 and g11 
(1 .::; j ~ n) will make no difference in the line elements. 
Consequently the condition (1) need hold only for j :/: i 1: k and we are 
left entirely in the dark concerning the behavior of the derivatives 
ag1lBui (1 :5: i,j ~ n ). lt follows that th~ g11 need not be constant and 
the manifold might not be Euclidean. The flaw in Dingler's proof was 
pointed out to him by Kurt Reidemeister. Dingler responded by 
imposing a further requirement on the chart u: the "parameter 
curves" (i.e., the integral paths of the o/ out) must meet orthogonally. 
This implies that g1k = O for j 1: k (1 :5: j,k ::; n) on. all the domain of 
u. 2 4 1 am not sure that this will save the foregoing argument but it 
certainly suffices to characterize Euclidean n-space. For a chart u 
meeting both the stated requirements is what is usually called a 

24 Dingler (1935 ), p.674. 
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Cartesian coordinate system and it is a well-known fact that such 
systems can only be. defined on Euclidean spaces. But who would 
venture to assert that a spherical surface is less simple than a cylinder 
because Cartesian coordinates can be introduced on the latter, while 
on the former one must make do, say, with latitude and longitude? 

In his article "On the concept of maximal simplicity"2 5 Dingler 
proposed an exact criterion of maximal simplicity by which, he 
claimed, the Euclidean metric turns out to be simpler than any other 
Riemannian metric. Dingler's criterion of maximal simplicity is of 
course essential for all applications of the Principie of Economy, on 
which his "pure synthesis" is made to rest, at least until the early 
twenties. It may be profitably compared with other such criteria 
proposed by simplicity-loving contemporary epistemologists. 
Dingler's criterion is intended to single out a "logical formulation" 
within a series or "group" of such formulations. Logical formulations • 
(logische Formulierungen) are identified by their features (Bestim-
mungen). Features shared by all formulations in the group are called 
group-features. All other predicates of a formulation are said to be 
individual features. Two or more features are said to be independent 
if the negation of any of them is compatible with the conjunction of 
the others.2 6 A feature is said to be negative if it consists in the 
absence of a feature; otherwise, it is said to be positive.2 1 A feature 
is said to be elementary (relative to a group of formulations) if it is 
not a conjunction of independent features or, if it is such a 
conjunction, all its components jointly determine every formulation 
of the group which shares any of them. The simplest logical 
formulation of a group is defined to be the one that posseses the 
least num ber of positive, independent and elementary individual 
features (relative to the group).2 8 Dingler's proof that Euclidean 
geometry is, according to this definition, the simplest Riemannian 
geometry, is less clear and straightforward than one might wish, but, 
if 1 understand it well, it ultimately rests on the following 
consideration: the metric tensor of Euclidean n-space is fully 

25 Dingler ( 1920b); reproduced in Dingler, GP2, pp. 101-113. 
2 6 Dingler defines independence only for a pair of determinations : th ey are 

independent if the negation of one is not incompatible with the other. But he 
subsequently uses t his concept as if it were an n -ary relation between 
determinations (for any n > 1 ). 1 presume that he would have accepted the 
definition I gave above. 

2 7 "Eine negative Bestimmung ist die Aussage, dass die Formulierung eine 
gewisse Bestimmung nicht hat." (Dingler (1920b), p .427 .) 1 confess that 1 am 
unable to make any sense of this defintion. 

28 Dingler (1920b), p.428. 
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determined by the n(n+ 1)/2 constant values of its components relative 
to a suitable chart, whereas no other metric tensor of a Riemannian 
n-space is fully determined by such a small set of num bers.2 9 The 
argument is conclusive only if the constant value of a component of 
a metric tensor relative to a chart of the respective n-manifold 
constitutes an elementary feature of the tensor, in Dingler's sense. 
Now such a component, even if it happens to be constant, is not just 
a number, but a scalar field. The statement that it is everywhere ( on 
the chart's domain) equal to a fixed real number k can be analyzed 
into the statement that its value at an arbitrary point of its domain is 
k and n statements to the effect that its partial derivatives with 
respect to the coordinate functions are all, at that point, equal to 
zero. These statements are not joint~y true of every metric tensor of 
which any of them is true. Consequently the statement that was 
analyzed into them does not express an elementary feature (relative 
to the group of Riemannian metric tensors). The metric of Euclidean 
n-space does not therefore exhibit only n(n+ 1)/2 positive, independ
ent, elementary individual features, but at least (n+ l)2n/2- provided 
that the features brought to light in the preceding analysis are indeed 
elementary. But in that case the Euclidean metric is not the simplest 
Riemannian metric but only one of the simplest, according to 
Dingler's criterion. For the metric tensor of any maximally symme
tric n-space can be specified in terms of a suitable chart by giving the 
value of its components relative to that chart at an arbitrary point of 
the chart 's domain and the value of its partial derivatives at that 
point with respect to the coordinate functions. And this makes 
(n+ 1)2 n/2 features, exactly as in the Euclidean case. We need not 
probe into this matter any further. I have dwelt on it so long chiefly 
because it serves to illustrate the pitfalls one is bound to run into 
when discussing the comparative simplicity of complex theories. In 
Das Experiment (1928) and after, Dingler no longer looks on 
simplicity as the decisive criterion that guides the copstruction of 
scientifi c theories. He expects instead that the scientist's will to refer 

• 
all the glittering and ever changing appearance of nature to a few 
definí te, stable, una m biguously reproducible forms shall suffice to 
determine the system of exact fundamental science. Thus, he writes, 

29 The complications in Dingler's actual argumentare partly dueto the fact 
that he tries to prove a stronger proposition, namely, that Euclidean space is the 
simplest me trie space ( or, as he puts it, that the Euclidean distance function 
is lhe simplest such function ). However, he makes sorne additional assumptions 
that restrict the metric spaces under comparison to the class of Riemannian 
11-spaces. See Dingler (1920b), pp.431-433. 
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"when we strive to find absolutely unambiguous forms (and such is 
the unavoidable foundation of all exact science) we are led perforce 
to Euclidean geometry. "Jo However, as one of his cri tics did not fail 
to point out, Dingler often uses his new favorite term " unambiguous
ness" (Eindeutigkeit) much in the same sense in which he earlier 
used "simplicity" (Einfachheit). F or instance, he characterizes 
uniformly accelerated motion as "the most una m biguous" (iúndeu
tigste) motion that starts from rest, because it 'contains the least 
number of defining features" (die wenigsten Bestimmungen). 3 1 

The deadliest objection against the definition of the rigid body 
by "the laws of Euclidean geometry" was raised by Dingler himself. 

t 

He called it "Wellstein 's objection," beca use he drew it from Joseph 
Wellstein 's article on the foundat ions of geometry in the Weber
Wellstein Encyclopedia of Mathematics. (The article was published 
severa! years before GAG). Wellstein 's objection stems from the 
essentially abstract nature of deductive theories. Any consistent 
theory admits several "models", i.e . interpretations under which 
all its theorems come t rue, and if the theory is not too simple it can 
be modelled in many incompatible ways in one and the same domain 
of objects. Moreover, any of the models can provide a framework fo r 
setting up others. Consider the case in point of Euclidean geometry, 
that is, the set of all logical consequences of Hilbert's axioms. Let E 
denote a model of Euclidean geometry. In other words, E is a set of 
objects, called " points", structured as a Euclidean space. Consider 
the collection of all spheres of E that pass through a fixed point P. 
Excise P. There remains a collection of punctured spheres. Call each 
punctured sphere a " plane" and the intersection of two such 
"planes" a "straight". lf we understand " point" and "incidence" as 
before and contrive a suitable interpretation of congruence the 
axioms of Euclidean geometry will all be satisfied on E - {P} , on the 

30 Dingler, EW2 , p.134; he adds further on that a unique geometry, i.e. 
"so-called Euclidean [geometry] ", results 11einfach aus der Absicht heraus, die 
überhaupt erst zur Gründung einer Geometrie hintreibt, aus der Absicht, in dem 
vielgestaltigen und fliessenden Wirklichen feste, eindeulig bestimmte Formen 
a ufzustellen." (Jbid., p. 138). 

31 Dingler, E, p. 117; see Th. Vogel 's remarks in v.Aster and Vogel (1931 ), 
p. 11. Subsequently Dingler regarded the quest for maximal simplicity as a 
consequence of the supreme scient ific principie of unambiguousness 
(Eindeutigkeit) . He proves it as follows: " Der Geist ist fahig, ungezahlte Arten 
von zu realisiere nden Pla nen (Ideen ) zu fassen (Grundfah igkeit). Um unter 
diesen eine eindeu tige Auswahl zu treffen, bedarf es eines formalen Prinzips. Da 
sich aber die Definition einer Idee stets durch Angabe einer ( e ndlichen) Zahl von 
Bestimmungen vollzieht, die bel iebig gross werden kann, so ist das einzige 
Mittel einer eindeutigen Festlegung formaler Art ein Minimumprinz ip für diese 
Anzahl . ., (Dingler, MP, p.197.) 
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proposed interpretation.3 2 Let E, denote the set E - (P) . structured 
as a Euclidean space according to this in terpretation. The Euclidean 
group of motions acts 0f course on E , in a definite way. But a 
" parallel translation ., or a .. rotation about a poinf' in E , ha,·e next 
to nothing in common with their namesakes in E. Our example 
shows clearly that ·'Euclidean geometry is unable to define the rigid 
body unambiguously.' 3 3 In order to characterize the rigid body as a 
"thing [that] changes in accordance with the laws of Euclidean 
geometry (of Euclidean motion) "34 we must first indicate how the 
Euclidean system is to be understood in its applications to physical 
things. Giving up the opinion he had voiced in GAG, Dingler now 
acknowledges that the connection between geometry and reality 
must be secured before the rigid body is defined and cannot be 
brought about by its definition alone. The step-by-step construction 
of physical geometry , brooched in the second edition of Die 
Grundlagen der Physill (GP2, 1923) and much furthered in Das 
Experim en t (E, 1928) is carried out in full in Die Grundlagen der 
Geom etrie (GG, 1933), and again, in a different, seemingly more 
rigorous manner. in Der Au fbau der gesamten Fundamental
wissenscha/1 (AEF. completed in 1944, published posthumously in 
1964).3 5 

3. "Tbc Systcm " aud "tbc Untouched". 

Before presenting t he final version of Dingler's philosophy of 
geometry it is advisable to say a few words about his mature 
conception of the system of exact science to which geOJnetry 
belongs. This is developed in Das Experiment and Das System (S, 
1930), and again in Die Methode der Physill (MP, 1938) and in his 
posthum ous works Die Ergreifung des Wirldichen (EW, 1955) and 
Au{bau der exalli en Fundamentalwissenscha{l. 3 G 1 take it that 
Dingler's philosophy of science remained essentially the same 
throughout this period, although in each new book he shifted 
perspectives and changed the terminology, apparently with the aim 
of making his teachings more perspicuous and persuasive. 

Dingler never tired of proclaiming that security is the essence of 
science.3 6 At the frontier posts of knowledge, one m ay indeed 

32 Wellstein, GG, pp.34 ff. 
33 Dingl er, GP2 , p.147. 
34 Dingler, GAG, p.132: quoted above on p. 7. 
35 See Dingler, GP2, pp. 147·164 : E, pp. 56 ·109 ; GG, pp.5·31 ; AEF, 

pp.1 53·187 ; see also MP, pp . 95·113, 164 ff. ; EW2, pp. 131·1 ·l 2. 
36 Dingler, MP, p.39 ; cf. GKTW, pp. 4, 76 : GP2, p. 32 ; S, p.60 , etc. 
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venture hypotheses, in the interest of a quick advance. But such 
hypotheses could not be measured up against facts and would even 
lack a definite meaning if science did not possess an indestructible 
core of absolutely certain knowledge. Dingler never reconciled 
himself with the modern vision of the boat of science being unbuilt 
and rebuilt while out at sea.J 1 

He motivates the scientific quest for certainty by an appeal to 
the supreme ends of mankind. No matter what these ends are man 
must seek to fulfil them in reality, and this implies, according to 
Dingler, that he must wish to learn more and more ways "of 
una m biguously exerting on this reality unam biguously preconceived 
effects." The ability to exert such effects he aptly calls "the 
domination of nature" (Die Beherrschung der Wirklichkeit oder der 
Natur) which is to him "the universal goal of all science." For the 
stated reason, the pursuit of this goal is a "prerequisite of man's 
ethical activity. "3 8 The "domination of nature" in the above sense 
must rest on stable rules and laws stating what has to be done in 
order to obtain the desired effects. To establish such laws, with the 
widest possible scope, is according to Dingler the chief task of 
science. 3 9 How can one achieve a secure knowledge of generallaws? 
Dingler rejects the classical rationalist conception of "self evident" 
universal truths that are "intuitively" grasped. 4 0 

All universal statements are questionable for they refer to an 
unlimited number of cases, which cannot all be perceived at once. 
There are only two kinds of statements that Dingler holds to be 
indubitable: (a) Statements describing whatever is directly expe
rienced or "lived through ", without any explanation or interpreta
tion (Erlebnisaussagen); and (b) statements concerning feasible actions 
"that can become and can have become actual or real at any time" 
(Handl ungsaussagen). 4 2 Consequently, if science is to be thoroughly 

37 1 have not found evidence that Dingler was familiar with Otto Neurath's 
metaphor, but he does mention with obvious dislike Popper'& comparison o.f 
science with a building erected above a swamp on piles "of which one knows 
that they must founder again and again" (Dingler, MP, p.14; cf. Popper, LSD, 
p.lll.) 

38 Dingler, MP, p.42; cf. S, p.31. The highest goal of mankind is the 
subject-matter of ethics. Dingler devoted to it his book Das Handeln im Sinne 
des hochsten Zieles (1935). 

3 9 Dingler, MP. p.44. 
40 See, e.g., Dingler, PH, p.118; S, pp. 50f. 
41 Dingler, S, p.33. 
42 Dingler, MP, pp.34,34. In Das System these two kinds of statements are 

called, respectively, (a) Hic-et-nunc-Aussagen or Intellektuationuiitze and 
(b) Willensaussagen or Realisationuiitze. (Dingler, S, pp.33,34,40,41.) 
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and securely grounded, all scientific statements must be shown to 
rest on either of these two kinds of uncontroversial "carefree" 
statements.4 a However, since induction is a hoax and no universal 
laws can be based on particular statements of fact, Erlebnisaussagen 
cannot provide alone the sought for foundation of science.4 4 
Therefore science must ultimately rest on Handlungsaussagen, that is, 
on proposals- and programs- for action. Each such proposal, if at all 
feasible, can be carried out innumerable times, "semper et ubique (in 
intention at least)", and thus possesses a kind of inbuilt universality, 
stemming "from our decision to apply [it] wherever it is appro-
priate. "4 5 Or, as Dingler puts it in AEF : 

In the sphere of that which is subject to our wil/ we can in fact [ .. . ] 
bestow universal validity on sorne statements simply by voluntarily 
carrying them out.46 

The fundamental "action statement" or "first proposition of the 
will" (erster Willenssatz) from which all science depends is carefully 
articulated into a system of 22 principies in AEF (pp. 38-48), under 
the general title of "The Plan." For our present purposes it will 
suffice to quote a much shorter collection of principies, listed in an 
earlier work as the "demands" of an "ideal methodology" 

(i) Science must provide an absolute and gapless foundation for 
each of its statements (Prinzip der Begründung). 

(ii) Its several stages and steps must be so ordered that none is pre
supposed by its predecessors (Prinzip der Ordnung, also called Prinzip 
der pragmalischen Ordnung, because it forbids "pragmatic vicious 
circles"). 

(iii) It must be possible to reconstruct science in its entirety at any 
time, so that, by following the same method again· from the beginning 
one arrives at exactly the same results (Prinzip des beliebigen 
Neuau(baues). 4 7 

4 3 Dingler, MP, p.60. 
44 On induction, see for example, Dingler, PH, pp. 102, 132, 137 ff. ; GP2 , 

pp.39 ff. ; S, p.50; MP, pp.340 ff.; EW2, pp.141 f.; also Dingler (1920c), p.130, 
(1923), pp.23,27. 

45 Dingler, S, pp.41 , 51. 
4 6 Dingler, AEF, p. 22. 
4 7 Dingler, MP, p. 71. The first and t he last principie are common to all 

rationalist epistemologies, but the principie of pragmatic order is characteristic 
of Dingler. A typical violation of this principie is ccth e circle in the empirical 
foundation of geometry", which arises when geometrical propositions are 
empirically tested by means of instruments built in accot·dance with a definite 
geometry. (See Dingler (1925).) Because all exact scientific experiments require 
instruments embodying the choice of a geometry, Euclidean geomet ry is 
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The principies of ideal methodology, especially the last two, 
clearly imply that science must have a definite starting point. This 
must be found in a prescientific stage of human consciousness, in 
which no scientific laws, and, generally speaking, no universal 
statements can be held to be valid. This stage or sphere of life Di¡lgler 
called "the pre-universal standpoint" and also "life's standpoint," 
because it is the standpoint that we ordinarily take in everyday 
life. 4 8 Within this sphere we distinguish naturally between that 
which depends on our own initiatives, our own '~will", and "the 
Given", i.e., "that part of my world in which 1 have not undertaken 
any deliberate intellectual changes (bewusste geistige Aenderun
gen) ". 4 9 

As a technical term for the gh·en, Dingler (1942) coined the 
expression das Un berührte, the Untouched.s o This is the rock 
bottom ground beyond which no foundational inquiry can go, the 
"zero-point" from which the methodical construction and recons
truction of science must begin. In agreement with the third 
methodological principie, the Untouched must therefore be recave
rabie at any time. Dingler believes that its recovery can be effected 
by abstaining from all general assumptions and theoretical interpreta
tions, from "every delibera te intellectual addition" to what is purely 
and simply perceived. s 1 We need not dwell here on the familiar 
difficul ti es that beset philosophical conceptions of the given. We 
must mention however than in Dingler's mature view, the Untouched 
almost coincides with the world of unsophisticated comm4>n sense. 
When all theories are put aside, he says, things about me are simply 
seen to be "out there", quite apart from any considerations 
regarding their causal action on my senses, such as, say, that 1 can 

absolutely to be preferred over other geometries of constant curvature (which 
Dingler regards, like Helmholtz, as the sote conceivable physical geometries , 
being the only ones compatible with the existence of rigid bodies). Since every 
geometry of non-zero constant curvatur~ involves a parameter-namely, the 
curvalure- which, in practice, must be fixed by measurement, any attempt to 
construc t the fundamental instrumen ts of measurement according to such a 

• geometry would be pragmatically circular for it would necessitate the use of 
those very instruments for measuring the parameter (Dingler, EW2, p.164). 

48 "Vorallgemeinstandpunkt " in Dingler, GP2, p.8, " Lebensstandpunkt " in 
PH, pp. l14 f., 122 f .; AEF. p .34; " Voreindeut igkeitsstandpunkt" in S, p. 54; 
MWL, pp. 34-38. The earliest fonnulation, still strongly influenced by 19th 
cenlury mental ism , in GKTW, pp.24 ff. 

49 Dingler, AEF, p.30. 
5O See al so Dingler, AEF, pp.30 ff.; EW2, p.80. In E, S and MP Dingler had 

often spoken of " untouched nature " (die unberührte Natur). 
51 Dingler, EW2, p.81. 

102 



only see them through my eyes and that I am not therefore really in 
touch with them but only with their sensuous appearance. Other 
persons I meet as such, i.e. as living and thinking people, and it were 
madness to describe them as perceived bodies whose behaviour 
intimates that they are probably governed by rational souls. The 
given comprises all the "basic faculties" (Grundfiihigkeiten)
including the faculty of speech- that are necessary for the construc
tion of science. Dingler repeatedly emphasizes that the givenness of 
such basic faculties is not a logical but a practica! presupposition of 
science; they are not a premise to its deductions but a source of its 
actual development. Because of this, it is neither necessary nor 
advisable to analyze them befare proceeding to the rigorous 
reconstruction of science. It is enough to exercise them as required as 
we go forward.5 2 

Foremost among the basic faculties needed for science is the 
capacity to conceive what Dingler calls ideas (Ideen). 53 He describes 
them as mental forms or structures (geistige Gebilde) that cannot be 
had as direct perceptions of reality nor as memory images of such 
perceptions.5 4 Su eh is, for example, the geometric idea of a 
widthless line. Ideas are schematic and can be totally grasped and 
analyzed for they contain only what we have deliberately put into 
them. They contrast with perceived realities, with their unlimited 
wealth of detail. Indeed, the infini te fullness of the latter, as against 
the essential meagreness of the former1 is singled out by Dingler as 
the main criterion for distinghishing between the "o u ter world" of 
reality and the "inner world" of ideas. 5 5 The very poverty of ideas is 
what makes them into the mainstay of exact science. In order to 
secure its goals one m ust be able to extract from "ever flowing 
nature" unambiguously defined, reproducible forms. But " in nature 
itself there are no such univocally definite elements, whose identity 
can always be verified with the highest available precision. "56 That is 
why the scientific domination of nature necessarily depends' on the 
conception and the deliberate, ever imperfect but ever improving 
realization of ideas. However, not any arbitrary idea, not any " free 

52 That all the natural abilities demanded for the construction o f science 
must be given at the outset was pointed out by Dingler in his earl iest book 
(GKTW, p.33). He subsequently returned several times to the subject. See 
Dingler, MWL, pp.64 ff. ; MP, p. 31; AEF, pp.33 ff. 

53 Dingler, AEF, p.54 ; EW2, p. 62. 
54 Dingler, EW2, pp. 109f. ; cf. p .61 and AEF, p.41. 
55 Dingler , EW2, p. 75 . 

• 

56 Dingler, AEF, p .54. 
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creation of the human mind" will do for this purpose. The ideas of 
science must be built following a st rict order. in accordance with the 
relevant principies of the Plan. beginning with the fourfold primor
dial idea we shall discuss below. Ideas built SYntheticalh· and 

• • 

methodically from this one are called by Dingler ideas of s-science or 
s-forms (where s stands for secure) . "Every attempt at determining 
something in nature in a truly unan1biguous and reliably reproducible 
way can only be carried out by means of the realizat ion the ideas of 
s-science [ . . . ] Indeed, every exact measuring instrument (from the 
simple meter rod to the in terfero1neter the quartz clock, etc.) is such 
a realisation of s-forms. S-forn1s are therefore the only available 

• 

means of achieving una m biguous statements exact concepts and laws 
in the natural sciences. " s 1 

The methodical synthesis of s-forms is presented by Dingler in 
AEF. One of t he principies of the Plan or first proposition of the 
will" developed at the beginning of that book prescribes that science, 
in i ts intellectual par t. m ust work excl usively with ideas.s 8 These 
ideas must be perfectly definite and it must be possible to 
reproduce them ( mentally) without an1 biguity and to recognize them 
without hesitat ion. They must also be realizable with increasing 
precision and their realizations ough t to be recognizable as su ch. The 
latter requirement implies that scientific ideas must be specified by 
properties or relations draw n from actual experience (das wirldiche 
Erleben). Consider any such property. It is indeed unambiguous as 
an experience, wh ile it is experienced. But there is no way of fixing it 
unambiguously in our minds or outside them; for mere recollection 
does not cerlify identity through t ime and there is no guarantee for 
the constancy of empirical circumstances. (None, at any rate, before 
exact science has be en erected. )s 9 Scientific ideas can therefore only 
be specified by perceived relations (Relationserlebnisse). But not any 
such relati on will do, either. "Only those perceived relations are 
relevant which are wholly independent of the peculiar nature of the 
related terms. "6 o According to Dingler only one perceived relation 
or " perception of relation" satisfies this requirement, and that is the 
perception of di{ference. This is had whenever we perceive an 
" unqualified something" ("überhaupl Etwas "), which is thereby 
singled out and characterized as "different from the rest, the 

57 Dingler, AEF, p. 55. 
58 Oingler , AEF , p...t-0 . 
59 Dingler , AEF, p.44. 
60 Dingler, AEF , p.4 5. 
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'background'. 61 This relation is perfectly unambiguous, for there is 
only one sort of difference. It can be unarn biguously fixed in the 
mind, and is unambiguously reproducible and recognizable at all 
times. 6 2 Dingler concludes that the primary s-idea, from which all 
other such ideas must be synthesized, is the idea of an unqualified, 
distinct something (Etwas Unterschiedenes überhaupt). This can be 
regarded (I) in itself and (II) as limited by the background. Both the 
something and its boundary can be viewed as (a) constant and 
(b) variable. We thus obtain a fourfold idea, which Dingler calls the 
Schema: 

(la) Sornething distinct, considered in itself, constan t. 
(lb) Something distinct, considered in itself, variable. 
(ITa) Something distinct, considered with regard to its bound

ary, constant. 
(Ilb) Something distinct, considered with regard to its bound

ary, variable. 

"The specific kind of something that is given by the Schema in 
each of these four cases becomes the fundamental element of a 
science, when the corresponding case is dealt with according to the 
principies of the Plan. " 6 3 The four sciences in question are: 

(la) The science of number (Arithmetic) 
(lb) The science of time and variables (Analysis) 
(Ila) The science of space (Geometry) 
(Ilb) The science of motion and its causes (Mechanics). 

It is not possible to sketch here Dingler's construction of 
Arithmetic and Analysis (AEF, pp. 57-137, 188-196; a similar, 
though greatly improved construction, is given in Paul Lorenzen's 
book, Differential und Integral, of which there is an English 
translation.) However, before brooching our chosen subject of 
geometry, it will be useful to paraphrase Dingler's discussion of the 
realization of the fundamental idea of arithrnetic, narnely, the idea of 
an unqualified, distinct, constant something. A natural object rnust 
be prod uced in which the idea is brought out as clearly as possible. 
Such an object necessarily possesses infinitely many irrelevant 
properties, which must be rnaximally inconspicuous, while its 

61 Dingler, AEF, p. 45. 
62 Dingler, AEF, p. 46. 
63 Dingler, AEF, p.57. 
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property of being different (from the background) is suitably 
enhanced. This is achieved as follows: we take a maximally uniform 
background, such as a white leaf of paper, and produce in it a 
difference of the sort described, e.g. a small black spot. Such a spot 
meets the stated cohditions. One pays no attention to its limits, its 
colour, etc. One sees only that an unqualified something is here 
singled out.64 One can subsequently consider another realization of 
the same idea, and view them both as belonging together. By 
repeating this procedure one can obtain a realization of any positive 
integer. 

4. Tbe Foundations of Geometry 

We have seen that young Dingler, in the wake of Ueberweg and 
Helmholtz, regarded the twin concepts of rigid body and rigid 
motion as the central concepts of gemetry. In GAG he sought to 
define these concepts by means of the Euclidean axioms, which, he 
maintained, determined the simplest conceivable distance function. 
A rigid body, in this view, is any body such that the (Euclidean) 
distance between any two of its points remains constant as the body 
moves in space. Dingler changed this approach when he became 
aware that, depending on the interpretation given to the Euclidean 
a.xioms, one could obtain many different, mutually incompatible, 
realizations of the rigid body. (It is indeed surprising that Dingler 
should have taken so long in discovering this, for the abstract- and 
hence systematically ambiguous-nature of axiom systems was duly 
stressed in his earliest book.)6 5 

In GG he claims to build geometry, "for the first time since 
Euclid", on entirely new, differently conceived, foundations.6 6 The 
new method consists in defining the rigid or, as he now says, the 
"deformation-free" body ( de{ormations-freier Korper or Df. K.) by 

• 

gradual specification of the original, admittedly unaccountable idea 
of a "space" that can be divided by "surfaces".6 1 The specification 
is done by means of a series of "definitionlike statements", 
"employing the language of everyday life and certain expressions 
[ ... ] that designate immediately intuitable contents (unmittelbare 

64 Dingler, AEF, p.58. 
65 Dingler, GKTW, pp. 6 ff. 
66 Dingler, GG, p.iii ; e f. pp.27 ff. 

6 7 Dingler, GG , pp. 5 ff. On p.6 Dingler emphasizes tha t it is useless to try 
to account for such ideas. " We must start here-he writes- from the simple fact 
that we havc them, and use their givenness as an instrum ent." 
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A nschaulichkeiten) from our ordinary everyday sphere of 
action. "6 s Such expressions enable us to prescribe unam biguously 
the actions leading to the realization of the relevant geometrical 
forms. The definitionlike statements in question are certainly not 
nominal definitions that introduce a shorter substitute for a 
complex, but well understood expression. In the new geometry they 
do indeed play the role of axioms; but they differ, say, from Euclid's 
or Hilbert's axioms in that they "merely take note of the existence 
of a basic faculty of direct comparison" and they "possess a direct 
unambiguous reference to reality, for they always express perform
able actions and have no meaning apart from that. "6 9 

On the other hand, in AEF geometry is presented as the theory 
of unchanging boundaries, and consequently all kinds of motion, 
rigid or otherwise, lie beyond its pale. 1 o Dingler's construction no 
longer aims therefore at defining the Euclidean rigid body, but at 
justifying the Euclidean axioms (in Hilbert's version) as necessary 
consequences of the only viable unambiguous specification (by 
means of the relation of difference) of the primordial idea of an 
unqualified something, considered with regard to its constant 
boundary. Notwithstanding this important difference of aim, and a 
few no less important differences in execution, Dingler follows in 
AEF the same steps as in GG, successively specifying the topological 
ideas of surface, line and point, the affine ideas of plane, straight 
fine and parallellism, and the metric idea of congruence; and there is 
little doubt that he regarded the theory developed in AEF only as a 
more perfect version of the one presented in GG. In either book, 
anticipating the objection that, in the end, he has merely produced a 
new-fangled axiom system, he emphatically asserts that his system 
differs from all its predecessors insofar as by the very manner of its 
generation it is naturally endowed with a definite interpretation. 

The starting-point of geometry is very clearly described by 
Dingler in his latest summary of the matter (in EW): "We call 
something bounded, a body; the boundary, we call its surface. [ ... ] 
The experience (Erlebnis) of a body bounded on all sides must be 
obtained from the Untouched, so to speak; otherwise we cannot begin 
at all. "1 1 It is clear that we do ha ve the said experience. But is it our 

68 Dingler, GG, p. 7. 
69 Dingler, GG, p.13 ; cf. pp.30 f. 
70 In the light of this development it is ironic to recall Dingler's earlier 

rejection of "the Platonic view, shared by Euclid (and Hilbert ), that movement 
may not occur in geometry". Dingler had declared that this view rested "on false 
epistemological assumptions" (GG, p .23). 

71 Dingler, EW2, p.1 31. 
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only experience of something bounded? Cannot we perceive a 
surface bounded by lines or a line bounded by points? Moreover, 
though such experiences may indeed suggest our idea of something 
bounded does not the latter go far beyond them? We cannot 
visualize, perhaps, but we can certainly conceive with the utmost 
precision an n-dimensional solid for any integer n greater than 3. To 
such questions Dingler would have probably replied that any 
bounded object we might make or handle is a ( 3-dimensional) body 
and its boundary is what we ordinarily call a surface. 7 2 Dingler 
chooses to regard bodies as distinct from their surfaces. (In other 
words, a Dinglerian body is always identical with its interior.) Both 
in GG and in AEF, Dingler introduces at the outset the idea of 
qualitatiue space or Q-space (analysis situs space or AS-space in GG), 
as the background from which bodies are separated by their surfaces. 
There follow in GG a few seemingly straightforward definitions: 
Q-space can always be divided by a surface into two separate parts ; 
such a surface is called a separation sur{ace. A separation surface T 
may in its turn consist of parts that lie in different regions of space 
divided by a separation surface T' which does not meet T. If such is 
not the case, T is called a running sur{ace (Laufflá'che). Dingler notes 
that such a surface always has two sides, corresponding to the two 
parts into which it divides space. A running surface can always be 
divided by a line into separa te parts. Such a line is called a separation 
line. A running line can be defined analogously. A running line can 
always be divided into two separate parts by a so called separation 
punctual. lf P is a punctual such that no two parts of P lie on 
different sides of a running surface, P is caBed a point. In AEF this 
simple development is replaced by twelve dense pages of definitions, 
assumptions and theorems, amounting to a clumsy, skimpy, but for 
Dingler's purposes probably sufficient topological theory of surfaces. 
Its declared aim is to eliminate the ambiguities in the everyday 
concept of a surface. 13 In the time elapsed after publishing GG, 

72 In a curious passage of MP, p .l05, Dingler sought to justify the choice of 
a 3-dimensional space by observing that it was the simples t space in which 
arbitrarily many bounded regions can simultaneously stand in mutual contact, 
each with a11. This, he felt, was required in order to fulfil " the desire for 
establishing arbitrarily many reciproca) causal actions". It is indeed well-known 
that in a 2-dimensional space hom eomorphic with the Euclidean plane five or 
more regions cannot be mutually in contact each with all , excep t through a 
point. But it is hard to see why contact through poi n ts should not be good 
enou h for transmitting causal influence. One may also take exception wil!' the 
assumption that the "simplest" space i~ the one with the smallest admissible 
dimension num ber. 

7 3 Dingler, AEF, p.160. 
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Dingler ob\'iously became aware that there are unspeaka bly many 
ways of exactly defining that concept. He consistently prefers what 
he takes to be the simpler, m ore nat ural alternatives, barring such 
monsters as a surface with isolated points or with protruding hairs 
or blades, that might be shaved off. so to speak, by a separation 
surface which does not meet the bodv of which the surface in • 

question is the boundary. The definitions of GG are essentially 
preserved, but further qualifications and distinc tions are now 
introduced, such as that between open and closed running lines or 
between simply connected and multiply connected running surfaces . 
If we are allowed to take a look at the collection of all points 
discernible in Q-space, we shall see that Dingler's theory furnishes it 
with a natural topology, in which Dinglerian bod ies are the open sets. 
T hat it is a Hausdorff topology fo llows at once from the very 
definí tion of a point. Does Dingler's theory succeed in specifying the 
topology of Q-space any further? It is hard to tell. We may assume 
that a body whose boundary is a simply connected running surface is 
always homeomorphic to R J, so that Q-space is a three-dimensional 
topological manifold. But the only hint we are given with regard to 
its global topology is not easy to interpret. Statement 1,22 says that 
space is ' unboundable" (unbegrenzbar). This can be taken to mean 
merely that to space as such no boundary can be set; that no surface 
can be found at which, so to speak, every running line will stop. On 
this interpretation, 1,22 is innocuous and not very iOuminating. 
Indeed, every topological manifold is unboundable in this sense. 
Dingler adds, however, that if space is divided by a separation surface 
into two bodies K and K; K will be said to be finite if it "contains 
nothing of the unboundable of space".7 4 In this case K , is said to be 
" fully infinite". On the other hand, if neither K nor K ' are finite 
they both contain something of the unboundable o f space, and are 
said to be " partially infinite". There is only one way in which I can 
make sense of these baffling definitions, and that is by inte rpreting 
1,22 to mean that space is non-compact, in other words, that not 
every collection of bod ies comprising all of space includes a finite 
subcollection that also comprises it. Without doing much violence to 
the foregoing definitions one can then reformulate them as follows: 
K is finite if it is contained in a compact region of space; otherwise K 
is infinite ("fully" or "partly", as befare) . The assumption that sp~ce 
is non-compact is evidently not so indifferent as the assumption that 

7 4 " In einem Korper K kann [ ... ] vom Unbegrenzbaren des R[aumes) nichts 
enthalten sei n ; dann heisst K endlich." (Dingl er , AEF, p .l61.) 
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it has no boundary, and one is entitled to ask what justifies it. In the 
methodological comments that follow upon the section on topology 
Dingler observes that his assumptions in that section are only 
intended to "select and fix among the unencompassable multitude of 
possibilities that are hidden in the concepts of everyday speech, 
those that are appropriate. "7 s He claims moreover that the choice 
m a de in each case is the only one that could be una m biguously 
determined at its respective stage. With the means available when the 
choice was exercised no other stipulation could have been formu
lated. One may indeed wonder whether this can be said of 1,22, 
when interpreted in the manner proposed by me. For evidently the 
same means that enable one to postulate that space is non-compact 
can be used for pronouncing it compact, and I cannot see that the 
fonner stipulation is more definite, or simpler, or in any sense more 
appropriate than the latter. These reflections will appear to discredit 
my interpretation of 1,22. On the other hand, only on that 
interpretation does Dingler's theory preclude space from having the 
topol ogy of projective space, a resul t that is taken for granted in the 
sequel. Of course, one may add, any postulate implying this result 
would seem no less arbitrary than the assumption that space is 
non-compact, within a theory whose axioms purportedly lack 
"ontological power", and which, as Dingler puts it, "do not say 
something about the constitution of reality, but only choose sorne 
among its countless possibilities, in order to determine certain 
concepts unambiguously, step by step, in every respect."7 6 

The theory of Q-space is followed by the all-important definition 
of the plane. This is very much the same in either book. In AEF it 
reads as follows: 

4,5. [ ... ] A running surface whose two sides are indistinguished {1) in 
their entirety and (2) wi th regard to each of their points, is called a 
plane. 

Dingler claims to show from his topological assumptions, that 
every plan e is simply connected ( 4,54) and divides space into two 
connected ( 4,53) "partially infinite" regions ( 4,55). Also that two 
different planes cannot share a piece of surface ( 4,6) and hence, if 
they meet at all, they meet on a separation line ( 4,62). Su eh a line is 
called a straight ( 4,63). Dingler maintains that no further assump-

75 Dingler, AEF, p.l73. 
76 Dingler, AEF, p.l75. 
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tions are necessary in order to prove Hilbert's axioms of incidence 
and betweenness. However, most of his proofs are objectionable. 7 7 

We mmt fix our attention on Definition 4,5 itself, which is clarified 
by Dingler's own paraphrase in EW: a plane is a surface whose two 
sirles can be wholly superposed at all places, and are thus spatially 
indistinguishable. 18 Dingler is quick to point out that, in accordance 
with the Plan, only the relation of difference has any bearing on this 
specification of the general idea of a boundary. We note however 
that not just any difference-or lack of difference-is relevant here, 
not, say, difference in colour or electric charge, but specifically 
spatial difference. Again, not every difference that we would 
ordinarily term spatial can be taken into consideration; for many 
such differences-e.g. differences in size or distance-have not yet 
been defined and will be defined later with the aid of the concept of 
a plane. Strictly speaking only topological differences stand at our 
disposal . But then, of course, if only such differences are considered, 
every simply connected open separation surface in a topologically 
Euclidean space satisfies Dingler's definition of a plan e. 19 That this 
was not what he had in mind , we gather at once from what he says 
about the practica! procedure for the manufacture of plane surfaces, 
which, he maintains, is justified by Defini tion 4,5. This is none other 
than the three-plate method we described on p. 87. Now, it is essent ial 
for this method that the three plates be stiff. But how are we to 
define stiffness? Indeed we would expect to judge of this property
by virtue of which an object resists bending, not stretching-by 
standards based on our idea of a plane. 

77 Allow me to paraphrase the " proof" of 4,54 : A plane is a simply 
connected running surface. lf the plane E is not simply connected and P is a 
poin t on E there is a neighbourhood S of P on E which can be embedded in a 
simply connected running surface. A simple ru nning line L1 can therefore be 
drawn which cuts S into two parts and hence also cuts E into two parts. On the 
other hand (by the definition of multiple connectedness) , th ere must be a simple 
running line L2 on E which does not cut E in two. But then th e two regions of E 
can be distinguished by means of these two lines L1 and L2 , and E does not 
satisfy the definition of a plane (4,5). The concluding sentence is hard to 
understand : What two regions of E are being sp oken of? The two regions into 
which it is allegedly cut by L 1 ? But no ment ion is m ade in 4,5 of such regions 
on aplane, but only of the regions outside it into which the plane divides space. 
However we need not probe further in to this matter, for the italicized clause 
41also cuts E into two parts" is plainly a non sequitur. 

78 "Eine ( .. . ) Fliiche, bei der ihre beiden FHichenseiten im ganzen und an 
allen Stellen aufeinanderlegbar, d.h. raumlich ununterscheidbar sind." Dingler, 
EW2, p. 133. 

79 T he two regions in to which such a sur face divides space are horneo· 
morphic and hence topologically indistinguishable. 
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A few simple group-theoretical considerations can help us under
stand what is wrong with Dingler's definition of the plane. Let R 
designate Q-space, with its natural topology. Let G be a group acting 
transitively and effectively on R. Let S be a simply connected surface 
which divides R into two connected regions R 1 and ~ (in other 
words, R- S is a topological space consisting of two components). Let 
H C G be the stability group of S. Dingler's definition of the plane is 
then equivalent to the following: S is a plane if and only if (i) for 
each h E H, either h(R1 ) = R 1 or h(R1 ) = R 2 ; (ü) for each pair of 
pointsx, y in S, there is an h E H such thath(x) =y. Every such group 
G determines a set of spátial properties and relations, the so-called 
G-invariants.8 o Obviously, if S is a plane by the definition just given 
and if h E H, a set of points X e S cannot be distinguished from 
h(X) with regard to the G-invariants; and the same can be said of 
R 1 and h(R1 ). Consequently, if we take spatial predicates to mean 
G-invariants and superposition of S on itself to mean any mapping 
X 1 > h(x) where h belongs to H e G, the stability group of S, we 
may indeed say with Dingler that the two sirles of S can be wholly 
superposed at all places and are indistinguishable with respect to 
spatial predicates. But no indication concerning the nature of 
such predicates can be gathered from the foregoing definition of 
the plane, for it depends essentially on the as yet undetertnined 
group G and its action on space. We cannot expect, therefore, that 
our definition or Dingler's definition 4,5 can of themselves 
con tribute to specify geometry and geol)'letrical predicates beyond 
the topologicallevel. Dingler grants as much when he observes, at the 
end of the section on planes and straights, that "the concept of 
ind istinguishabilit y, on which everything rests, has not yet been 
defined in any way. "8 1 We can derive but little confort from this 
remark, for Dingler does not define this concept in the sequel. In 
fact, he resorts again to it, as it stands, in his definitions of 
paralellism , orthogonality and congruence. 

• 

80 A group Gis said to act on a space R if there is a mapping F : G x R •R 
such lhat for any g,h € G and any x € R, if gh designates the product of g and h 
in G , F (g,F(h,x ) = F(gh,x) . For brevity, we wri te gx instead of F(g,x). G acts 
t ransilivel y on R if for every x,y € R th ere is a g € G such tha t gx=y . G acts 
effect ively on R if gx=x for every x € R only if gis the neutral element of G . The 
stabi li ty gro up of a par t M o f R is the subgroup of G whose underlying set is 
{ g jg E G and for each x € M, gx € M ) . An n -ary relation P on R is invariant 

under G or G-invarian t i f for every g € G and X¡, . . ,Xn € R, P(x 1 , .. • ,xn) 
impl ies P(gx 1 , .. . ,gxn ). 

81 Dingler , AEF, p.l 83. Contrast w ith this his earlier reliance on our 
everyday percepl ion of difference (Dingler (1925), p .323 , quoted below in n ote 
95. ) 
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To these we must now turn. GG defines parallel line as follows: 
let g be a straight on plane E, and let P be a point on E outside g; if 
a line g ' on E passes through P and t he strip limited by g and g shows 
no difference "on either extreme to the left and to the right of P", g 
and g ' are said to be parallel. The Dingler parallel to g through P is 
obviously unique. If we grant that two straigh ts do not meet at more 
than one point, it is clear that two Dingler parallels cannot meet at 
all (their intersection would occur on one side of P). But there is no 
apparent reason why any two coplanar lines must intersect if they 
are not Dingler-parallel. Dingler, of course, is well aware of it . 
Boylai-Lobachevsky geometry-in which through any point outside 
a given straight line m we shall find a single Dingler parallel to m, but 
also two Bolyai-Lobachevsky and infinitely many Euclid parallels to 
m- is excluded only by Dingler's definition of the deforrnation-free 
body.s 2 This can be rendered as follows: We shall say that a body K 
glides along a straight line or along a plane if it moves in such manner 
that every point of K that lies on the said line (plane) at any time 
continues to lie on it throughout the movement; we shalllikewise say 
that K rotates about a line g that passes through it if it m oves in such 
manner that any point of K that lies on g remains on the same 
location throughout the movement; finally, we shall say that two 
straight lines g and h meet orthogonally if the figures fo rmed on 
either side of g are indistinguishable. A body K is said to be 
deformation-free if and only if (I) whenever K glides along any 
straight line g through K and any planeE through g, (a) K also glides 
along every other plane through g and along every parallel to g that 
passes through K and belongs to any of those planes; ( b) if H is the 
set of points of K which lie at sorne time during the motion on a 
given straight line h through g, then, as K glides along g and E, H lies 
at each moment on a parallel to h ; (Il) whenever K rota tes about a 
straight line g through it (a) K eventually returns to its initial 
position; (b) if G is at same time during this motion the intersection 
of K with a half-plane F bounded by g, G comes to lie once on each 
half-plane bounded by g befo re returning to F ; (e) if P is a point of K 
outside g which lies at same time during the motion on a line h ¡hat 
meets g orthogonally at Q, then, if P 1 and P 2 denote any two 
locations of P during the motion, the segments QP 1 and QP 2 are 

82 Let g be a straight line, P a point outside it, g ' a line thro ugh P o n t he 
plane determined by P and g. g ' is parallel to g according to Euclid 's definition if 
and only if g and g ' do not meet ; it is parallel to g acco rding to Bo lyai's and 
Lobachevky 's definition if and onl y if every line betwecn it and the 
perpendicular from P to g m eets g. 
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indistinguishable except by their position. Two segments AB and CD 
are said to be congruent if a giyen pair of points on a deformation
free bodY can be carried into coincidence first with AB and then 

• 

with CD.8 3 

Dingler s definí tion of a deformation-free body is plainly an 
attempt to characterize Euclidean translations and rotations. \Ve shall 
allow it to be satisfactory and shall not discuss the necessity ( or 
redundancy) of its requirements. \Ve would rather wish to learn what 
justified Dingler's belief that such a com plex and restrictive set of 
stipulations was uniquely determined and prefera ble to every 
conceivable alternative. From Helmholtz he acquired the persuasion 
that only deformation-free motions can induce a physically meaning
ful distance function on Q-space. This restricts the choice to the 
four classical geometries of constant curvature: Elliptic, Spheric, 
Hyperbolic and Euclidean. The first two are excluded if Q-space is 
non-compact. (Hence the need for our proposed interpretation of 
1,22). But how does Dingler justify his preference for Euclidean and 
against Hyperbolic or Bol~·ai-Lobachevsky geometry? He often notes 
that the latter is essentially ambiguous, for it can only be determined 
up to a constant (we may take this to be the Schweikart constant, 
i.e. the distance between the vertex of a right angle and a straight line 
paral lel to both its sides; or the constant negative Riemannian space 
curvature, etc. )8 4 Euclidean geometry is not affected by a similar 
indeterminacy but, as Dingler had learnt from Wellstein, in the 
familiar axiomatic formulation it leaves room for a wide varietv of 

• 

interpretations. It was his declared aim in GG to overcome this 
difficul ty by his novel, allegedly nonaxiomatic approach. He m ay 
claim success if, but only if, bis definition of the deformation free 
body is trul y una m biguous. This, as I shall now show, is far from 
being the case. Let R designate Dingler's Q-space with its natural 
topology and let G be the ( abstract) group of Euclidean motions. If 
Dingler's definition of the deformation-free body is correct there 
must be a mapping •1 1: G x R-?R through which G acts transitively 
and effectively on R, such that, if B is any deformation-free body 
anti H and H , are two locations filled by B at two moments of its 
history, there is a g e: G such that <JI (g, H) = H.' Let (: R ~ R be an 
arbitrary homeomorphism. Let ~ : G x R )'- R be defined by ~ (g,x) 
= f o •1, (g, t 1 (x )). lt can be easily shown that G acts transitively and 

83 Dingler, GG, pp. 23-25. 
8 4 Se e no le 4 7. 
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effectively on R through \}! .8 5 A body any two of whose locations K 
and K .. meet the condition 

\}l(h, K) = K .. for sorne h e G 

will then satisfy Dingler's definition of the deformation-free body. In 
particular, if f agrees with the identity on H, while f(H') is a proper 
subset of H ', Dingler's definition can be simultaneously exemplified 
by the above mentioned body B that successively occupies H and H .. 
and by another body B .. that successively fills H and only part of H '. 
Of course the planes and straights and parallels mentioned in the 
definition of the deformation-free body will not be the same in 
either case. This is only natural since we have shown that Dingler's 
characterization of these geometrical entities depends on the choice 
of a group and its action on Q-space. The group is here in both cases 
the same, namely, the Euclidean group of motions, but its action is 
different. Since there are no a priori grounds for preferring \}! to <Por 
tl> to "', there is no reason for holding that B is more properly a 
deformation-free body than B ', or vice versa. 

In AEF the treatment of parallellism and congruence is rather 
different. Parallellism is defined for planes. Let E 1 be a plane that 
divides space into two regions R; and choose a point P in R 1 • Let E2 • 

be a plane through P that lies entirely in R 1 and divides space into 
two parts R 2 and R~ . E1 must them lie entirely in one of these parts, 
say in R2 • The intersection of R 1 and R 2 is a body- a slab- limited 
by E1 and E2 • If all the directions in which this body is unlimited are 
indistinguishable, E1 and E2 are said to be parallel. Two straight ' 
lines, g1 and g2 are parallel if they are the intersections of two 
parallel planes with a third plane. It is clear that parallel planes- in 
the foregoing sense-do not meet. Dingler postulates that any two 
planes meet unless they are parallel (7,2). He claims to derive the 
usual parallel postulate from this one (8,4;8,5). Let AB and CD be 
two segments, lying on two parallellines. If AC and BD, or if AD and 
BC also lie on parallel lines, AB and CD are said to be congruent 
(8,6). Now, if AB and CD are two arbitrary segments there always 
exists, on Dingler's assumptions, a segment CB' which is congruent to 
AB by the foregoing definition.s 6 Congruence, or lack of it, between 

85 We must show that for any g and h in G and any x in R, 
'l!(gh,x) • 'l!(g, 'l!(h,x)). Now 'l!(g, 'l!(h,x)) "" f o <1> (g, f" 1 

o f o <l>(h,fl (x))) • 
f o <1> (g, <l>(h,fl (x))) = f o <P(gh,fl (x)) = 'l! (gh,x). 

8 6 Draw the parallel to AB through C. Draw the parallel to AC througbiB. 
Let B 'denote their intersection. (The latter must exist, for both lines lie on plane 
ABC and they are parallel, respectively, to two lines through A). 
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two arbitrary segments will therefore be defined if we can provide a 
criterion of congruence for segments with a common endpoint. The 
criterion supplied by Dingler is disappointing: two segments PQ and 
PR, with a common endpoint P, are said to be congruent if they are 
indistinguishable! (9,1).8 1 

It must be clear by now that Dingler's construction of geometry 
as a branch of exact fundamental science does not fulfil the high 
hopes fostered by his ambitious programme. Paul Lorenzen has 
sought to vindicate Dingler's approach to the subject in a very 
illuminating article on "the problem of the foundation of geometry as 
a science of spatial order", apparently written while he was working 
on the posthumous edition of AEF.8 8 We owe to Lorenzen an exact 
definition of the key concept of indistinguishability: Two objects are 
indistinguishable if every sentence that says something about one 
implies the sentence which says the same about the other. Since 
irnplication is exactly defined only for sentences belonging to 
formalized or canonic languages, Lorenzen's concept of indistin
guishability is relative to the choice of such a language. In bis 
discussion of geometry, he considers a first-order language with three 
sorts of individual constants and variables (standing for points, 
straights and planes, respectively) and four primitive predicates: "lies 
on" (a binary relation between a point and a straight ora point and 
a plane, or between a straight anda plane), "lies between" (a ternary 
relation between a plane and two points), "is parallel to" (a binary 
relation between two planes) and "is perpendicular to" (a binary 
relation between a line and a plane ). We need not worry here about 
the limitations of first-order language as a vehlcle for geometry.8 9 

Let x and y be two individual constants of Lorenzen 's language. We 
may say that the objects denoted by x and y are geometrically 
indistinguishable in Lorenzen 's sense if every sen ten ce S of the 
language, in which y does not occur, implies the sen ten ce S ' obtained 
by substituting y for x in every ocurrence of the latter in S. Guided 
by this general criterion Lorenzen achieves a rigorous formulation of 
Dingler's definition of the plane. Let E denote a plane, while P and Q 
denote points. Let S(E,P) be any sentence in which the only 
individual constants are E and P and let S(E,Q/P) be the sentence 
obtained by substituting Q for P in every ocurrence of the latter in 

B 7 However, it is instructive to read Dingler 's definition in the light of 
Nevanlinna 's t reatment of congruence in Nevanlinna and Kustaanheimo GG 
part l. ' ' 

88 Lorenzen (1961). Lorenzen's edition of Dingler's AEF appeared in 1964. 
89 See Tarski, "What is elementary gf:\ometry?" 
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S(E,P). Planes are then characterized by the following two "princi
pies of homogeneity": 
l. Inner homogeneity. lf P and Q lie on E, S(E,P) implies S(E,Q/P). 
2. Outer homogeneity. lf neither P nor Q lie on E, S(E,P) implies 

S(E,Q/P).9 o 

Evidently the two principies will suitably restrict the extension 
of the concept of a plane only if the predicates of the language are 
specified further. As usual, incidence and betweenness are characte
rized by axioms. Lorenzen does not list them but quotes the 
following two examples: 

lf E lies between P and Q, then, for any point X not on E, E líes 
between X and Por E lies between X :znd Q. 

If E lies between P and Q and both P and Q lie on the straight g 
there is a point X at which g meets E. 9 1 . 

Parallellism and orthogonality are characterized by axiom sebe
mata: 

l. lf point P lies on straight g and point Q Iies on straight g' 
and g and g , lie on plan e E and E is parallel to plane F, 
S(E,F,P, g) implies S(E,F,Q/P, g /g). 

11. If point P lies on the straights g, h and k, and g is 
perpendicular to plan e E and h and k Iie on E, S( E, g, h) 
implies S(E, g,k/h). 9 2 

Lorenzen adds the following existence postulate: lf E is any 
plane and Pis any point there is a unique plane X through P which is 
parallel to E and a unique straight through P which is perpendicular . 
to E. In Lorenzen 's geometrical language congruence between 
segments or point-pairs can be easily defined. We say that two 
point-pairs (A,B), (C,D) are parallel, if there is a plane E on which 
points A,B,C, and D lie and there are two parallel planes F 1 and F 2 , 

distinct from E, su eh that A and B lie on F 1 and C and D lie on F 2 • 

Two point-pairs (A,B), (C,D) are said to be orthogonal if (A,B) Hes 
on a straight perpendicular to sorne plane through (C,D). Four 
distinct points A,B,C and D, such that (A,B) is parallel to (C,D), are 
said to form a parallellogram ABCD if (A,C) is parallel to (BD) or if 
(A,D) is parallel to (B,C). lf say, (A,C) and (B,D) are parallel, (A,D) 
and (B,C) are caBed the diagonals of ABCD. We can now define: 

90 Lorenzen (1961 ), p.134 gives only the fll'St of these two principies. The 
second one is added in the more popular exposition in Lorenzen and 
Schwemmer, KLEW, p.227. 

91 Lorenzen (1961 ), p.136. "P e E" in the first axiom is plainly a misprint 
for " P /E". 

92 Lorenzen (1961), pp. 136, 135. 
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Two point-pairs (A,B) and (C,D) are congruent if and only if one 
of the following conditions is fulfilled: 

(i) (A,B) = (C,D): (ii) a point of (A~B), say A, is identical with a point 
of (C,D), say C, and there exists a point X such that ABXD is a 
parallelJogram with orthogonal diagonals (A,X) and (B,D) ; (iii) ABCD is 
a parallellogram and (A,B) is parallel to (C,D) ; (iv) there exists a 
point-pair (X,Y) which is congruer¡ t with both (A,B) and (C,D). 

Lorenzen 's postula tes imply that any perpendicular to a plan e E 
is also perpendicular to every plane parallel to E. For let F be such a 
plane and h the perpendicular to E through P e E. h meets F on Q. If 
h -;: k, h and k determine a plane G which intersects E along the 
straight g. g is thereby distinguished among the lines through P on E. 
This, however, is incompatible with axiom schema 1.9 3 It follows 
immediately that any two points A and B on a plane E and the 
points C and D ( where the perpendicular to E through A and B meets 
a plane F parallel to E) determine a rectangle. Max Dehn (1900) 
showed that the existence of rectangles in a space will not suffice to 
mark it out as Euclidean unless it is asserted jointly with the 
Archimedean axiom.9 3 b Lorenzen obligingly adds th is axiom to his 
assumptions. Lorenzen's work certainly throws a new light on the 
fundamental concepts of geometry, placing Dingler 's true merits in a 
proper perspective, and may even procure a fairer hearing to such 
discredited items of mathematical tradition as Euclid's definition of 
the straight line as a line which líes equally (€~ i'aou KELTat) with 
regard to its points. But it does not vindicate Dingler's attempt to do 
away with geometric axiom systems. Lorenzen 's system m ay claim 
greater perspicuity than Hilbert's. It would certainly be no mean 
achievement to have rid geometry of the concept of congruence. 

93 This can be shown more precisely as follows. Let x and y be two 
individual constants or variables standing for points, straight lines or planes. Let 
X n y denote the intersection or 'meet , of X and y. Let X u y denote their 'joi n ', 
by which we mean (i) the plane detennined by them, if x and y are two straights 
or a straight and a point outside it, or (ii) the straight determined by them if x 
and y are two points, or (iii) x itself, if y=x or if y lies on x, or (iv) y itself, if x 
lies on y. We now consider an instance of Axiom Schema I , in which the 
antecedent reads: " If P líes on g and P lies on g · and g and g • lie on E and E is 
parallel to F". The sentence S(E,F ,P,g) is: " For every straight h and every straight 
k, if h is perpendicular to E and .k is perpendicular to F and h n P=P and 
hnF=knF then ((hUk)n E.)U g=g". Under the aforesaid condi tion this 
sentence will universally imply the sentence obtained from it by substitut ing 
g • for g, only if for every h and k meeting the stated requ irements, 
Jh, ~k)í1E=P, that is to say, only if h=ll. This necessary condition can only be 
met 1f E and F have a common perpendicular through P. Since Pis arbit rary, two 
parallel pl,anes have a common perpendicular through each point on either. 

93b The Archimedean Axiom says that given two segments r and s, with r less 
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But Lorenzen's svstem is an axiom svstem all the same. no less • • 

ambiguous than the rest, fraught with all the equivocations attendant 
on a first order theory with an infinite model. 

Two m ore attempts at vindicating a Dinglerian view of geometry 
may be mentioned here. Bopp (1969) allows his case for the 
uniqueness of Euclidean geometry to rest ultimately on experience, 
thus en tirely missing Dingler's main philosophical point, namely, that 
geometry, the fundamental theory of measurement, is presupposed 
by every scientific observation. Janich (1976) tries to show that an 
"operationally grounded" practica! geometry must necessarily be 
Euclidean. Sorne essential steps, such as the constructive formulation 
of the Archimedean axion, are- he admits--still pending. I am afraid, 
moreover, that even within the ground actually covered by J anich he 
overl ooks sorne possibili ties. Janich operationally defines corners, i.e. 
solid bodies with three polished flat faces meeting orthogonally ata 
vertex. Let ABC designate a corner with polished faces A,B and C. 
Let face A rest on a sufficien tly large flat surface E. We press a 
cerner FGH against face B, so that face H lies opposite E, leaving an 
empty space between them. Now apply one face, say P, of a small 
enough corner PQR, against H, while faces Q and R fall towards 
E. If the geometry were Euclidean it should then be possible to place 
still another corner with one face pressed against Q or R, while 
another fits snugl y upon E. But Janich 's operational definitions 
cannot provide any assurance that this must be so. Since the 
standards set for corners have nothing to do with the foregoing 
configuration it is just a contingent, empirical fact that such corners 
as might be produced in a carpenter shop do fit into the 
configuration rather well. 

S. Concluding Renzarks 

Dingler's foundation of geometry amounts in the end, as we have 
seen, to just another, not remarkably neat and perhaps even 
insufficient axiomatization of Euclid's theory. Like all such axioma
tizations it admits infinitely many mutually incompatible interpreta
tions in a suitable domain. Given one such interpretation 1, with 
underly ing topological space R, the rest can be derived from it 
through the automorphisms of R in the manner sketched in our 
dis~ussion of the definition of the rigid body in Dingler's GG (pp. 
115f.). It is a familiar fact that among the many possible physical 
• • 

interpretations of Euclidean geometry there is one according to 

than s, there exists a positive integer n such that s is less than n times r. 
1 
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which a human body, or at any rate a human bone, behaves 
approximately like a Euclidean rigid body. We are encouraged to give 
special attention to this interpretation by Dingler's remark that any 
"axiom system of geometry designed to yield an unambiguous 
physical geometry (eine eindeutige Geometrie in der Realitiit) should 
not only display relations of the fundamental concepts to one 
another, but must also contain their relations to us. " g 4 Indeed, if 
there were only one such interpretation it would in alllikelihood be 
singled out unambiguously by the exercise of our ordinary powers of 
discrimination, on which Dingler once relied for fixing the meaning 
of "indistinguishable" as used in his axiom system.9 5 But of course 
the said interpretation is not unique. Consider a physical interpreta
tion 1 of Euclidean geometry. Choose a unit of length in l. Let 11 be a 
positive rational number. We say that a body B is rigid in I within 11 
if any segment of unit length marked in B continues to measure 1 ± 11 
units while B remains under certain standard physical conditions ( of 
temperature, stress, etc.) no matter how it is moved about in space.9 6 

Obviously there are infinitely many different interpretations of Eucli
dean geometry that agree with I in the choice of the unit of length, 
in all of which B is rigid within r¡ . This fact forces us to take a new 
loo k at Dingler's theory of measurement. He held, as we know, that 
the manufacture and improvement of precision instruments is guided 
and controlled by Euclidean geometry.9 1 In a sense, he is right. But· 
we cannot understand this to mean, as he believed, that there is a 
unique idea of the deformation-free body being progressively realized, 
with increasing approximation, in the factories of precision instru
ments. On the contrary, the preceding remarks show that at each 
stage in the history of metrology there is a whole family of interpre
tations of Euclidean geometry that are embodied, within the then 

94 Dingler (1925), pp.322 f. My italics. 
95 "This axiom system yields a geometry which naturally depends on what 

one means by "different ,, but which is completely unambiguous if we 
understand this word in the sense determined by our immediately given 
knowledge of the relation thus called (the very considerable agÍeement of 
different men on this matter is a physiological hic et nunc fact which opens the 
p.ossibility of defining the concept of human "nonnality, with regard to it). ,, 
Bihgler (1925), p.323. 

9 6 For our discussion we need only this abstract, purposely impractical 
definition of rigidity. We need not analyze the exact operational and statistical 
meaning of the statement that such and such a segment, marked on a body, 
measures 1 or 1±11 units of length. 

97 Dingler (1920a). See above, p.10. 
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i· accepted approximation, in the standards and methods of measure-
ment. Every technical advance, allowing a decrease in the fraction 
within which meter sticks can be required to be rigid, or prescribing a 
change in the material from which meter sticks are made, or in the· 
methods by which readings are taken on them, involves a modüication: 
of that family. Historically, it would seem, such changes have always· 
involved a reduction of the previously accepted family, not its 
replacement by another one not contained in it. But metrologically 
acceptable interpretations of Euclidean geometry cannot be said to 
converge towards one of them according to a priori laws. lmprove
ments in measurement inevitably involve sorne tacit, usually uncons
cious choice. The considerations by which such choices are guided 
deserve sorne attention. At any given time measurements performed 
with the best means available agree with one another within sorne 
specifiable range. This sets an infimum to the rational num bers 
within which standards of length can be required to be rigid in sorne 
interpretation of Euclidean geometry. Any interpretation in which 
the standards of length are rigid within that infimum is then 
metrologically acceptable. At sorne moment in history wooden 
yardsticks were substituted for the anatomic standards whose 
memory still lingers in the names of sorne units of length ( e.g. hand, 
foot, cubit; the French pouce, etc.) The main reason for this change 
was not that human limbs were insufficiently rigid within the then 
attainable precision, but rather that they were not uniform enough 
to yield consistent measurements even with that low precision. 
English metrology was tied to the King's foot, but its length had to 
be preserved and reproduced in sorne hard, durable, transportable 
stuff in which sections of equal length could be easily marked. 
Wooden yardsticks were later replaced by metallic meter rods mainly 
for the sake of increased exactness. Let 17 designate the rational 
number within which the best wooden standards could be required 
to be rigid. Let F( r¡) be the family of interpretations of Euclidean 
geometry in which wooden standards were rigid within 17 under 
specific "normal" conditions ( u.n.c.). More exact measurements 
could only be achieved by means of standards of length rigid within a 
number o < 17· For sufficiently small o not even the best wooden 
standards will all be rigid within o, u.n.c., in an interpretation of 

• 

Euclidean geometry. There was thus a limit beyond which no 
improvements in precision could be achieved except by changing the 
method of measurement. In the case in point the change was fairly 
easy: it was a matter of making the standards in t1nother material. 
There obviously exists, for sorne num ber o, considerably smaller than 
our hypothetical 17, a family F( o ) C F( 17 ), su eh that, say, steel rods, 
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under appropriate conditions, are rigid within S in any member of 
F(S). F(S) is certainly a proper subset of F(17). A further increase in 
precision coupled with a further reduction in the farnily of 
metrologically admissible interpretations can be attained by replacing 
steel by the platinum-iridium alloy used in the meter rod at Sevres .. 
The important thing is that each such reduction-say from F( r¡) to a 
specific F( S ) e F( 11 )-is determined by the choice of the material out 
of which the standards are made, which is bound to depend in its 
turn on the materials actually available. Generally speaking any 
advance in metrology involves a transition from one range of error r¡ 

1 to a lesser range of error S. This brings about a reduction of 
: the family of admissible physical interpretations of geometry. 
1 

In our notation, one passes from a family F( r¡) to another 
family F(S) e F(11 ). The choice of F(S) within F(17) is determined by 
the nature of the new metrical procedures which are responsible for 
the advance. We see at once that, since it is assumed that F(S) must 
be a subset of F(17), the previous history of metrology conditions at 
any of its stages the step that will be taken next. This step, however, 
is not arbitrary within the range allowed by that history, for it is 
severely limited by what is materially and technically possible. 
Analogous considerations apply to enlargements of the spatial scope 
of exact distance measurements. Suppose that the best meter rods 
are required to be rigid within 11, in a family of interpretations F(r¡ ). 
The elements of F( 11) are presumably indistinguishable in everyday 
life or in the laboratory, where distances are measured directly by 
rods. However, discernible differences must inevitably arise on the 
astronomical or even on the geographical scale. Obviously not every 
interpretation of Euclidean geometry in which the best rods are rigid, 
under standard conditions, within sorne small real number 17, is 
compatible with the classical assumption that starlight travels along 
straight lines outside the atmosphere of the Earth. Let H(r¡) be the 
subset of F(r¡) which is compatible with this assumption. H(17) is 
preferred to the remaining interpretations, not because of any 
specifically geometrical reason, but because light rays are, as far as 
one can see, the only available means for keeping track of the 
geometry in outer space. This last fact enables us to guess which 
would have been the reaction of the scientific community had it 
been verified that astronomical triangulations resting on the assump
tion just mentioned consistently yielded measurements deviating 
from Euclidean predictions by more than the admissible error. Far 
from refurbishing optics in order to preserve their Euclid, scientists 
would in all likelihood have gone through the trouble of leaming 
non-Euclidean geometry and would have proclaimed its validity in 
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the physical world. 9 8 According to Dingler such behaviour would 
have constituted a violation of the principie of pragmatic order, for a 
geometry may not base its claims on measurements performed with 
instruments designed according to another geometry. However, what 
really matters here is not the geometry by which the instruments in 
question have been built but the geometries that they actually satisfy 
(with the attainable exactness). And there can hardly be any 'doubt 
that if, say, Lobachevsky had verified that astronomical data 
sustained the claims of a Bolyai-Lobachevsky geometry G(k), with 
characteristic parameter k, meter rods would have been found to be 
rigid in G(k) within the sanie number within which they were 
required to be rigid in Euclidean geometry.9 9 

. Though 1 cannot countenance Dingler's thesis that physical 
geometry is determined uniquely by the will to do science, and is 
Euclidean, 1 am persuaded that his philosophical study of geómetry 
throws an important light on the physically more significant features 
of Euclidean geometry and helps explain its success in providing a 
starting-point for the rational elaboration of experience. 1 cannot 
bestow such praise on his attempted foundation of Newtonian 
mechanics as the fourth branch of exact fundamental science. While 
his theory of geometry depends heavily on Helmholtz's and owes 
much to the work of Klein, Poincaré and Hilbert, bis philosophy of 
mechanics stands all by itself as an idiosyncratic and seemingly 
far-fetched creation.1 o o We cannot deal with it here, but a few brief 
indications may give the reader an inkling of it. Its main tenet is that 
the phenomena of change can be given a final, intelectually satisfying 
scientific explanation only by analyzing them into interactions of the 
simplest conceivable kind. Now the simplest conceivable interaction 
can be unambiguously.defined, according to Dingler, as that between 
two mass-points acting on each other according to Newton 's Law of 
Gravitation. That the interacting points or "infinitesimal balls"1 o 1 
must have a mass is proved as follows: 

98 My guess is based on what has actually happened in the 20th century. 
However, in order to keep the discussion, as far as possible, in Dingler's own 
terms, 1 refrain from introducing considerations involving the relativistic notion 
of a space-time metric. I therefore speak of physical geometry as if it could be 
kept neatly separate from chronometry. This simplifies matters and does not 
weaken my methodological argument. 

99 Lobachevsky's astronomical calculations are given in Lobachevsky, ZGA, 
p.24. See also Gauss' letter to Gerling of March 16th, 1819 (Gauss, WW, vol.8, 
p.182). 

1 o o It.does not Jack foJl~wers, however. See Thüring, GPGP. 
101 Differentialkugel (Dingler, EW2, p.147). 
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A purely geometrical figure can neither exert nor receh·e an action 
because it has a purely ideal nature. In order that [the infinitesimal ball] 
K may receive an action an additional property should ~ ascribed to it 
(a property not expressed in its geometrical fonn). We denote this 
property of K by m.1o 2 

Dingler seeks to show that Newton 's Axioms of Motion also pertain 
necessarily to the simplest schema of interaction. Since the same 
characteristic constant occurs in the Second and Third Axiom and in 
the Law of Gravitation, Dingler thinks that the identity of 
gravitational and inertial mass is automatically secured.1 ° 3 Since the 
Law of Gravitation is a principie of exact fundamental science, no 
observation or experiment can be held against it. Indeed in our vast, 
complex and mostly unknown world, there is no dearth of occult 
causes for explaining away any apparent deviation of nature from 
Newtonian orthodoxy. Thus, Dingler praises H. von Seeliger for 
explaining the precession of Mercury's perihelion as caused by 
interplanetary dust.1 o4 

From Dingler's standpoint, Einstein 's Theory of Relativity was 
totally unacceptable. Physicists may indeed propose imaginative 
hypotheses for the temporary, heuristically profitable yet intellec
tually unsatisfactory explanation of phenomena that resist analysis in 
terms of Newton 's laws. But such hypotheses should by no means 
contradict the principies of exact fundamental science or inextricable 
chaos will ensue. Dingler acknowledges the mathematical beauty of 
Einstein's creation but deplores the philosophical ~onfusion from 
which it stems. He criticized the Theory of Relativity in the fourth 
part of Physik und Hypothese (PH, 1921) and in several papers 
written in the early twenties.1 o 5 In contrast with many early 

1 o 2 Dingler, EW2, p.148. For alleged proofs that the law of interaction 
must be formaJly identical with Newton 's law of gravitation, see Dingler, GP2, 
p.112; E, pp. 116 ff; MP, pp. 136 ff. ; AEF, pp. 212 ff. A good analysis of the 
presuppositions o f the proof in E will be found in Aster and Vogel (1931 ), pp. 
10 ff. 

103 Dingler, GP2, pp.240 ff. 
104 Dingler ( 1923 ), p.49. He refers to Seeliger, .. Das Zodiakallicht und die 

empirischen Glieder in der Bewegung der inneren Planeten ",in Sitzungsber. der 
bay.A kad., 36 ( 1906 ). In t his work the origin of zodiacal light is ascribed to an 
ellipsoidal m ass of cosmic dust surrounding the sun, and also causing the 
precession of Mercury 's perihelion . 

105 Dingler, PH, pp.1 50-188, RO, (1920d ), (1923), E, pp.135-14 5 (on the 
possibilily of non-Newtonian mechanics) and pp.1 54 f. (on the definition of 
simultaneity, criticized by Vogel in Aster and Vogel (1931 ), pp.18-20), MP, 
pp.165f., 186-191, 262, 390-394. Dingler 's criticism of relativity is neatJy 
summarized in Willer, RE, pp.112-129. fteich enbach (1921) is a very apt reply 
to Dingler (1920cJ). 
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adversaries of Einstein, he never questions the consistency of the 
theory. His main objection is that such logically consistent mathema
tical structures can be had by the dozen, and that to fit into them any 
collection of data within the admissible range of experimental error 
is merely a matter of ingenuity, of rightly choosing the relevant 
parameters and boundary conditions.1 o 6 By losening its ti es with the 
uniquely privileged, unambiguously definable theories of Euclid and 
Newton, science has been left adrift. Dingler's detailed criticisms of 
Einstein's theory are few in number and do not bespeak a very deep 
acquaintance with it. He never comes to grips with the fundamental 
conception of a spacetime metric, for neglect of which he can arrive 
at the quaint conclusion that Special Relativity violates either the 
Principie of Sufficient Reason or the Principie of the Homogeneity 
of Space, when it predicts that two materially indistinguishable 
natural processes beginning simultaneously may not end at the same 
time.1 o 1 Dingler's most striking objection is directed against 
Galileian, not Einsteinian relativity. The Galileian principie, which is 
usually regarded as an integral part of Newtonian physics, can be 
formulated saying that no mechanical experiments will ever enable us 
to decide whether our laboratory is at rest or moving with uniform 
rectilinear velocity. Dingler believes that a scientific and hence 
unambiguous description of phenomena requires that we distinguish 
neatly between motion and rest. This can be done by referring all 
observed positions to a single spatial coordinate system. Dingler 
believes such system can be determined uniquely and has been 
indeed so determined by astronomers, from the average positions of 
the stars. The Galileian principie is therefore irrelevant to Newtonian 
physics. Were it not so, the consequences would be disastrous to the 
latter. For mechanical experiments are useless not only for disceming 
uniform rectilinear motion from rest but also for distinguishing 
uniformly accelerated rectilinear motion from uniform rectilinear 
motion. It will be countered that this claim is plainly false since, for 
example, a man drinking beer on a smoothly flying aeroplane might 
for aught he knows be at rest yet will instantly notice the slightest 
jerk of the aeroplane. However, this familiar counterexample is not 
fair to Dingler's claim, for the comparison between rest and uniform 

106 Compare Imre Lakatos' claim that "the most admired scientific theories 
simply fail to forbid any observable state of affairs, (Lakatos and Musgrave, 
CGK, p.lOO) and Popper's criticism in Schilpp, PKP, pp.1004-1009. 

107 Dingler (1920d), p.21; cf. pp. 18 ff. Tbe prediction in question, 
illustrated by the Paradox of Twins, merely shows that natural clocks in a 
relativistic world do not measure time but proper time, i.e. the spacet'ime 
interval along their respective world-lines. 
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rectilinear m otion and th~t between the latter and unifortnly 
accelerated recti1inear motion are not based on strictly analogous 
assumptions. In the former case, the same constant velocity is 
initially imparted to all the elements of a system. Observation of the 
relative positions of those elements does not then disclose the 
velocity. In the latter case the same constant acceleration is not 
simultaneously imparted to every element of the system but only to 
sorne, viz. to the body of the aeroplane ( which, for simplicity's sake, 
we may regard as perfectly rigid), but not to the drinker and the beer. 
No wonder then that observation of their relative positions reveals 
the acceleration.Suppose, however, that K is an inertial frame and K ' 
.is a system of objects moving with the same uniform rectilinear 
acceleration a relative to K. It is impossible to tell from the sole 
observation of the motion whether the relation between'K and K ' is 
that de~ribed abo ve or whether K falls freely with acceleration ·é! in a 
homogeneous gravitational field in which K ' is at rest. Dingler's claim 
turns out to be merely a reformulation of Einstein's ( weak) Principie 
of Equivalence. It is ironic that when levelling bis gun against 
Galileian Relativity he should have thus unwittingly lighted on one 
· of the chief buttresses of Einstein's General Theory.1 o 8 

Though Dingler's conceptions, like so many other at first blush 
exciting philosophical projects, have not been and in all likelihood 
cannot be successfully worked out in detail, one cannot easily forget 
the rich suggestions of his original vision: 

Nature does not of itself provide any element or properties of exactly 
constant constitution (within the momentarily accepted range of 
imprecision), nor are there any means intrinsic to it for disc~rning 
them. That is why we procure ourselves in the absolutely unambiguous 
ideal concepts and their realizations a solid scaffolding in nature. Only 
that which belonJ; to this scaffolding or is tightly bound to it can be 
exactly reproduced; hence only in these elements can truly exact 
"naturallaws" be found .l 0 9 

Universidad de Puerto Rico 

108 In fact, the gist o f Dingler 's remarks can be elicited from Corollary VI 
to Newton 's Laws of Motio n : "lf bodies, moved in any manner amo ng themselves, 
are urged in the direction o f parallel lines by equal accelerative forces, they will 
all continue to move among themselves, after the same manner as if t hey had no t 
been urged by those forces." 

109 Dingler, EW2, pp. 162 f. 
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