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PHYSICS, PHILOSOPHY, AND THE FOUNDATIONS OF 
GEOMETRY 

MICHAEL FRIEDMAN 

Twentieth century philosophy of geometry is a development and 
continuation, of sorts, of late nineteenth century work on the 
mathematical foundation s of geometry. Reichenbach, Schlick, a nd 
Carnap appealed to the earlier work of Riemann, Helmholtz, Poincare, 
and Hilbert, in particular, in articulating their new view of the nature and 
character of geometrical knowledge. This view took its starting point 
from a rejection of Kant's conception of the synthetic a priori status of 
specifically Euclidean geometry-and, indeed, from a rejection of any 
role at all for spatial intuition within pure m athematics. We must sharply 
distinguish, accordingly, between pure or mathematical geometry, 
which is an essentially uninterpreted axiomatic system making no 
reference whatsoever to spatial intuition or any other kind of extra

axiomatic or extra-formal content, and applied or physical geometry, 
which then attempts to coordinate such an uninterpreted formal sys tern 
with some domain of physical facts given by experience. Since, 
however, there is always an optional element of decision in setting up 
such a coordination in the first place (we may coordinate the 

uninterpreted terms of purely formal geometry with light rays, 
stretched strings, rigid bodies, or whatever), the question of the 
geometry of physical space is not a purely empirical one but rather 
essentially involves an irreducibly conventional and in some sense 
arbitrary choice. In the end, there is therefore no fact of the matter 
whether physical space is E uclidean or non-Euclidean, except relative to 
one or another essentially arbitrary stipulation coordinating the 
uninterpreted terms of pure mathematical geometry with some or 

another empirical physical phenomenon. 
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T his characteristically twentieth century view in the philosophy o f 
geometry took its inspiration, as well, from Einstein's creation of the 
general theory of relativity-which theory was taken by logical 
empiricis t philosophers like Reichenbach, Schlick, and Carnap to be the 
culmination and epitome, as it were, of nineteenth century research into 
the mathematical foundations of geometry by such thinkers as Riemann, 
H elmholtz, Poincare, and Hilbert.1 Nevertheless, this close association 
between the general theory of relativity and the conventionalist view in 
the philosophy of geometry sketched above can appear extremely 
puzzling from our present point of view. According to the general 
theory of relativity, as we now understand it, the geometry of physical 
space becomes, in effect, another physical field-the field mediating 
specifically gravitational interactions. Whether a given region of physical 
space is Euclidean or non-Euclidean depends on the distribution of 
matter and energy in that region and therefore appears to be a 
straightforwardly empirical or physical question: geometry, as it is 
sometimes said, bas become a branch of physics.2 So there appears to 
be no warrant, from this perspective, for the view that physical 

geometry is in any way arbitrary or conventional. There is a fact of the 
matter about the geometry of physical space, and Euclidean geometry, 

1 The most explicit development o f the characteristically twentieth century view 1 
am considering is in Reichenbach's Philosophie der Ra11m-Zeit-Lehre (Berlin: de 
Gruyter, 1928); translated as The Philosophy of Space and Time (New York: D over, 
1957). In particular, the essence of the view is presented in §§ 4 - 8 of this work, 
beginning with a section on "coordinative definitions" and culminating in a 
statement of "the relativity o f geometry." And the connection with Einstein's theory 
becomes even more explicit when we note, as Reichenbach himself points out, that 
the view he is presenting is a logical developmen t of views earlier presen ted in t he 
context of discussions of the foundations o f general relativity theory by Schlick and 
himself. Carnap, in his ln troductory Remarks to the English Edition, briefly sketches 
the view in question and explains that "[t]he view just outlined concerning the nature 
o f geometry in physics stresses, on the one hand, the empirical character of phys ical 
geometry and, on the other hand, recognizes the important function of conventions[; 
t]his view was developed in the twenties of our century by those philosophers who 
studied the logical and methodological problems connected with the theory of 
relativity, among them Schlick, Reichenbach, and myself" (p . vi). For discussion of 
the earlier views of Schlick, Reichenbach, and Carnap on the foundations of 
geometry and relativity theory see my Reconsidering L ogical Positivism (Cambridge: 
Cambridge University Press, 1999), Part O ne. 

2 This is the title of a well-known paper by the physicist H. P. Robertson, 
published in P. Schilpp, ed., Albert Einstein: Philosophtr-Scientist (La Salle: Open 
Court, 1949), pp. 315-32. 
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in particular, is, in a perfectly straightforward sense, simply a false 
description of the overall structure of this space (although it may hold, in 

the limit, in certain precisely defined physical situations). 

The loc11s classic11s for the intersection between twentieth century 
philosophy of geometry and Einstein's general theory of relativity is a 
famous paper by Einstein himself, entitled "Geometry and Experience" 
and delivered in 1921.3 This paper articulates a very clear and sharp 
version of the distinction between "pure" and " applied"-mathematical 
and physical-geometry that soon became canonical in twentieth 
century scientific thought.4 According to Einstein, mathematical 
geometry derives its certainty and purity from its "formal-logical" 
character as a mere deductive system operating with "contentless 
conceptual schemata." The primitive terms of mathematical geometry, 
such as "point," ''line," "congruence," and so on, do not refer to objects 
or concepts antecedently given (by some sort of direct intuition, for 
example) but rather have only that purely " formal-logical" meaning 
stipulated in the primitive axioms. These axioms serve therefore as 
"implicit defmitions" of the primitive terms, and all the theorems of 
mathematical geometry then follow purely logically from the s tipulated 
axioms.s Applied or physical geometry, by contrast, arises when one 
gives some definite extra-axiomatic interpretation of the primitive terms 
via real objects of experience. But now the purity and certainty of 

3 A. Einstein, "Geometric und Erfahrung," Preuuiuhe Akademie de r 

IV'issenschaft. Physikaliuhmathematische Klasse. Sitzungsb erichte (1921), pp. 123-
30; Erweiterte Fassung des Festvortrages gehalten an der Preussi.rchen A kademie 
der Wissenschaft zu Berlin am 27. Januar 19 21 (Berlin: Springer, 1921); transla ted 
as "Geometry and Experience," in G. Jeffrey and W. Perrett, eds., Sidelights o n 
Relativity (London: Methuen, 1923), pp. 27-55. In what follows I present materia l 
originally presented in my "Geome try as a Branch of Physics: Background a nd 
Context for E instein's 'Geometry and Experien ce'," in D. Malament, ed., Reading 
Natural Philosophy (Chicago: Open Court, 2002). I am indebted to David Malamen t 
and Open Court Publishing Company for permission to present this material here. 

4 A well-known later presentation of this canonical twentieth century view is C. 
Hempel, "Geometry and Empirical Science," American Mathematical Monthly 52 
(1945); reprinted in H. l'eigl and W. Sellars, eds., Readings in Philosophical Analysis 
(New York: Appleton-Century-Crofts, 1949), pp. 238-49. H empel's paper is basically 
an elementary exposition of the fu:st part of Einstein's; it closes by quoting E ins tein 's 
famous characterization of the re lationship between mathematical certainty and 

empirical reality. 

5 Sec Geometrie und Erfahrung. ErweiterU Fawntg (note 3), pp. 4-5 Ueffrey and 

Perrett, pp. 30-31). 
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mathematical geometry (which, in the end, rests simply on the purity 
and certainty of logic) is irrevocably lost, and we end up with one more 
empirical science among others: 

In so far as the propositions of mathematics refer to reality they are not 
certain; and in so far as they are certain they do not refer to reality. Full 
clarity about the situation appears to me be have been ftrst obtained in 
general by that tendency in mathematics known under the name of 
"axiomatics." The advance achieved by axiomatics consists in having cleanly 
separated the formal-logical element from the material or intuitive content. 
According to axiomatics only the formal-logical element constitutes the 
object of mathematics, but not the intuitive or other content connected with 
the formal-logical element.6 

Thus, these famous words from Einstein's paper, which were clearly 
intended and were standardly taken as a refutation of the Kantian 
conception that mathematics is the paradigm of synthetic a priori truth, 
are a vivid expression of the modern axiomatic conception of geometry 
we now associate with the work of Hilbert. Indeed, Einstein himself 
takes the notion of "implicit defmition, to which he appeals here from 
Schlick's generalization of Hilbert's point of view to all of empirical 
science in his 1918 treatise on General Theory of Knowledge.? 

So far, then, Einstein's own view of the matter is perfectly in 
harmony with the characteristically twentieth century view in the 
philosophy of geometry with which I began. In articulating his view of 
specifically physical geometry, however, Einstein takes a quite different 
tack. For he here views physical geometry, in particular, as a 
straightforward empirical theory of the actual physical behavior of 
"practically rigid bodies,, and he claims, in a striking passage, that 
"without (this conception] I would have found it impossible to establish 
the [general] theory of relativity., Immediately thereafter, in the same 
passage, Einstein considers Poincare's geometrical conventionalism
apparently as the only real alternative to his own view-and suggests that 
"if one [following Poincare] rejects the relation between the practically 

6 Gtomtlrit und Erjahr11ng, pp. 3-4 Qeffrey and Perrett, pp. 28-9). (All 
translations from German originals are my own.) 

7 M. Schlick, Allgemeine Erkennlnislehre (Berlin: Springer, 1918); translated 
(from the second, 1925 edition) as General Theory of Knowledge (La Salle: Open 
Court, 1985). This is one of the earlier works to which Reichenbach refers in The 
Philosophy of Space and Time (no te 1). 
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rigid body and geometry one will in fact not easily free oneself from the 
convention according to which Euclidean geometry is to be held fast as 

the simplest." Einstein concedes that "[s}ub specie aeterni Poincare, in 
my op1n1on is correct," for "practically rigid bodies" are in fact 
unsuitable to play the role of "irreducible elements in the conceptual 
framework of physics." Nevertheless, Einstein suggests, they must 
provisionally "still be called upon as independent elements in the 
present stage of theoretical physics"-when, in particular, we are still 
very far from an adequate micro-theory of the structure of matter. A nd 
where such rigid bodies must "still be called upon as independe n t 
elements," it is clear, is precisely in the foundations of the general th eory 
o f relativity.8 

In thus considering applied or physical geometry as a straightforward 
empirical theory, Einstein appears to be much more in harmony with 
our present, post- conventionalist understanding of general relativity. 
From the point of view of precisely this current understanding, 
however, there are other aspects of Einstein's overall view that now 
appear puzzling in a rather different way. Why, in the fttst place, should 
a sharp distinction between pure or axiomatic and applied or physical 
geometry be specifically associated with the theory o f relativity? Einstein 
is well-aware, as I suggested, that this distinction had most recently 
become prominent in connection with Hilbert's celebrated 
axiomatization of Euclidean geometry in 1899-a development that 
occurred some fifteen years before Einstein's own application of non
Euclidean geometry in physics.9 So the distinction has, on the face of it, 
no special relevance to this later development, and it makes just as much 
(or as little) sense in the context of the traditional use of Euclidean 
geometry in classical physics. Indeed, it makes just as much (or as little) 
sense in the context of everyday applications of Euclidean geometry in 
surveying and measurement-which Einstein, in "Geometry and 
Experience," calls "the oldest branch of physic s"10 - as it does in the 
context of the very complex and sophisticated application of non
Euclidean geometry employed by E instein's new theory. As a matter of 

8 See Geomelrie tmd Erfahrung, pp. S-8 Qeffrey and Perrett, pp. 31-6). 

9 D. Hilbert, Grundlagen der Geometrie (Leipzig: T eubner, 1899); translated (from 
the tenth, 1968 edition) as Foundation! of Geometry (La Salle: Open Court, 1971). 
This work is of course prominently cited by Schlick as the basis for the notion of 
"implicit definition" in his General Theory of Knowledge (note 7), § 7. 

10 See Geometrie und Erfahrung, pp. S-6 Qeffrcy and Perrett, pp. 31-3). 
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fact, and in the second place, Einstein's particular explanation of applied 
or physical geometry actually appears to be more appropriate to 
everyday applications in surveying and measurement that it does to the 
general theory of relativity. For it is not as if, in the general theory, we 
find that space is non-Euclidean by actually performing surveying 
experiments with rigid measuring rods. Rather, we postulate a highly 
theoretical link between gravitation and spatio-temporal curvature, on 
the basis of which it then emerges from some very abstract 
mathematics that the spatial region in the neighborhood of the sun, for 
example, is described by a non-Euclidean geometry. This conclusion can 

then be tested, of course, but the whole procedure bears very little 
resemblance to the surveyor's conception of applied geometry Einstein 
articulates in "Geometry and Experience." 

In order to begin making sense of Einstein's argument, we need to 
consider it against the background of a preceding conception of 
geometry one that was dominant in the late nineteenth century but has 
now, largely through the influence of "modem" views like Einstein's, 
receded far into the background in contemporary philosophical 
discussion. This earlier tradition had its home in projective geometry 
and group theory, and it found its canonical expression in the famous 
Erlanger program of Felix Klein.11 Here, as Klein himself puts it, pure or 
mathematical geometry is by no means conceived as an "empty 
conceptual schema," but is rather understood as necessarily connected 
to our "spatial intuition."12 Mathematical geometry, on this view, 

11 For discussion of Klein's Erlanger program see It Tocretti, Philosophy of 
Geometry from Riemann to Poincarl (Dordrecht: Reidel, 1978), § 2.3. T orre tti's 
Relativity and Geometry (Oxford: Pergamon, 1983) depicts the development of 
relativity theory as the outcome of two quite different nineteenth century programs 
for unifying the foundations of geometry-Klein's Erlanger program, on the one 
side, and Riemann's general theory of manifolds, on the other. The special theory of 
relativity can be seen as based on the former program, the general theory on the 
latter. As Torretti masterfully shows, however, serious misconceptions arise by not 
keeping these different traditions distinct; for, as further explained below, the form er 
applies only to spaces of constant curvature and can therefore be of no use 
whatsoever in characterizing the variably curved space-time structure of general 
relativity. The present paper, in this respect, can be thought of as a further 
development and application of Torretti's original insight. 

12 Klein's Elemenlarmathematile vom hoheren S tandpunlel 
Geomelrie (Leipzig: Teubner, 1909), pp. 383-4-translated as Elementary 
from an Advanced Standpoint: Geometry (New York: Dover, 1939), p. 
matter as foUows: " In the case of such people who are only interested 

aus. Teil I I: 
Mathematics 
187-puts the 
in the logical 
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describes the most general and abstract features of our perception of 
space-namely, the ((perspectival'' features of space as we move in and 

through it and perceive spatial objects from different point of view. 
These features are not precise and specific enough to yield Euclidean 
geometry in particular, however, but only that structure common to the 
three classical geometries of constant curvature (Euclidean, hyperbolic, 
and elliptic), which, in terms of the Erlanger program, emerge naturally 
within the more general framework of projective geometry and group 
theory. So only considerations of convenience and expediency 
(especially simplicity), not deliverances of our spatial intuition, can then 
explain our choice of specifically Euclidean geometry. This view of 
geometry has obvious roots in the conception articulated and defended 
by Kant at the end of the eighteenth century, but it aims to ge n erali ze 

the Kantian picture to take account of nineteenth century discoveries in 
projective and non-Euclidean geometry.13 

side o f the question, and not in the intuitive or general-epistemological side, one 
often finds the opinion nowadays that the axioms are only arbitrary propositions 
that we set 1ljJ entirely freely, and the j11ndamental concepts, 11ltimately, are a Is o 
only arbitrary signs for things with which we wish to operate. What is correct in 
such a view, of course, is that within p11re I ogi c no basis for these propositions and 
concepts is found, and that they therefore must be furnished or suggested from 
another side-precisely by the influence of intuition. However, the authors [in 
question] often express themselves much more onc-sidedly, and so we are repeatedly 
forced nowadays, in connection with modern axiomatics, straightaway once agai n 
into that philosophical position which has been known since ancient times as 
nominalism. H ere the interest in the things themselves and their properties is 
entirely lost; and one speaks only of how they arc to be named and in accordance 
with which logical schema they are to be operated. One then says, for example, that 
we call a triple of coordinates a point 'without thereby thinking of anything,' and we 
stipulate 'arbitrarily' certain propositions that are to be valid of these points; on e 
can set up arbitrary axioms in an entirely unlimited way, so long as one satisfies th e 
laws of logic and takes care, above all, that there is no contradiction in the ensuing 
structure of theorems. I myself in no way share this standpoint but take it to be th e 
death of all science: the axioms of geometry-in my opinion-are not arbitrary 
b111 rather rationalproposilions, which are motivated, in general, by spatial 
int11ilion and reg11lated, in their partic11lar content, by considerations of 
p11rposiveness [Zweckmiij1igkeitsgriinde l." The context makes it clear that Klein has 
those excessively influenced by Hilbertian axiomatics in mind. Hilbert's own work in 
the foundations of geometry grew out of this same projective tradition, however, and 
llilbert himself famously says in the brief Introduction to his Fo11ndations of 
Geometry (note 9) that the problem of axiomatizing geometry amounts to "the 
logical analysis of our spatial intuition." 

13 See Torretti, Philosophy of Gtomttry (note 11), § 2.3.1 0 for a discussion of 
Klein's view of spatial intuition. For a somewhat more sympathetic discussion of th e 
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For our present purposes, the most important result of this tradi tion 
is what we now call the Helmholtz-Lie theorem, which was first 

articulated by Helmholtz in connection with his psycho-physiological 
researches into space perception and then rigorously proved by Sophus 
Lie (at the instigation of his teacher Klein) within Lie's theory of 
continuous groups. Helmholtz was inspired by Riemann's work on "n
fold extended manifolds" to attempt to derive Riemann's fund amen tal 
assumption, that the line-element is P ythagorean or infinitesimally 
Euclidean, from what Helmholtz took to be the fundamental "facts" 
generating our perceptual intuition of space. 14 Helmholtz's starting point 
was that our idea of space is in no way immediately given or "innate" but 
instead arises by a process of perceptual accommodation or learning 
based on our experience of bodily motion. Since our idea of space arises 
kinematically, as it were, from our experience of moving up to, away 

from, and around the objects that "occupy" space, the space there by 
constructed must satisfy a condition of "free mobility" that permits 
arbitrary continuous motions of rigid bodies. 15 And from this latter 
condition one can then derive the Pythagorean form of the line-

relationship between (closely related) nineteenth centuries views of spatial intuition 
and the original Kantian conception see my "Geometry, Construction, and Intuition 
in Kant and His Successors," in G. Scher and R. Tieszen, eds., Btlwun Logic and 

Int11ition: Euays in Honor of Charlu Panons (Cambridge: Cambridge University 
Press, 2000). 

14 B. Riemann, "Uber die Hypothesen, welcbe der Geometric zugrunde liegen," 
Abhandl11ngen der Kiiniglichen Gesellschaft der TPisunschaften zy Gottingen 13 
(1867); Nell hera11sgegeben 11nd erla11terl von H. Weyl (Berlin: Springer, 1919); 
translated as "On the H ypotheses which Lie at the Foundations of Geometry," in D. 
Smith, ed., A So11rce Boole in Mathematics, vol. 2 (New York: Dover, 1959), pp. 411-
25. H . Helmholtz, "Uber die Tatsachen, die der Geometric zum Grunde liegen," 
Nachrichten von der Koniglichen Geullschajl der Wisunschajlen 11nd der Geo rg
August-Universitiit a11s dem Jahre 1868 9 (1868); reprinted in H. Helmholtz, 
I"Piuenschajlliche Abhandlungen, vol. 2 (Leipzig: Barth, 1883); translated as "On the 
Facts Underlying Geometry," in R. Cohen and Y. Elkaoa, eds., Hermann von 
Helmholtz: Epistemological Wn.tings (Dordrecht: Reidel, 1977), pp. 39-71. 

15 For Helmholtz's view of space-perception see G. Hatfield, The Nat11ral and 1 he 
Normative: Theodes of Space Perception from Kant to Helmholtz (Cambridge, 
Mass.: MIT Press, 1990), chapter 5. For a discussion of Helmholtz's mathematical 
results in the context of his theory of space-perception see J. Richards, "The 
Evolution of Empiricism: I-Iermann von Helmholtz and the Foundations of 
Geometry," British ]o11rnal for the Philosophy of Science 28 (1977), pp. 235-53. See 
also my "Helmholtz's Zeichentheorie and SchJick's Allgemeine Erleenntnislehre: 
Early Logical Empiricism and Its Nineteenth-Century Background," Philosophical 
Topics 25 (1997), pp. 19-SO. 
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element. 16 Since, however, the Riemannian metric thereby constructed 
has a group of isometries or rigid motions mapping any point onto an y 
other, it must have constant curvature as well. So the scope of the 
Helmholtz-Lie theorem (and the entire Kleinian tradition) is much less 
general than the full Riemannian theory of metrical manifolds, which of 
course also includes manifolds of variable curvature. 

The H elmholtz-Lie theorem fDces the geometry of space-and, 
according to H elmholtz, thereby expresses the "necessary form of o ur 
outer intuition"- as one of the three classical geometries of constant 
curvature: Euclidean, hyperbolic, or elliptic. But how do we know which 
of the three classical geometries actually holds? At this point, on 
Helmholtz's view, we ~nvestigate the actual behavior of rigid bodies (of 
rigid measuring rods, for example) as we move them around in 
accordance with the condition of free mobility. T hat physical space is 
Euclidean (which Helmholtz of course assumed) means that physical 
measurements carried out in this way are empirically found to satisfy the 
laws of this particular geometry to a very high degree of exactness. Thus 
Helmholtz's view is Kantian in so far as space indeed has a " necessary 
form" expressed in the condition of free mobility, but it is empiricist in 
so far as which of the three possible geometries of constant curvature 
actually holds is then determined by experience.17 

16 In Lie's formulation, given a group o f transformations on a manifold such that, 
intuitively, for any two "observers" or "points of view" there is exactly o ne 
transformation in the group mapping one onto the other, there is a unique-up to a 
scale factor- Riemannian metric on the manifold whose isometrics are given 
precisely by the group in question. For the work of H elmholtz and Lie sec T orretti, 
Philo!ophy of Geometry, § 3.1. For a philosophically and mathematically 
sophisticated discussion o f Helmholtz and Riemann sec §§ Vl-Vll of H. Stein, "Some 
Philosophical Prehistory of G eneral Relativity," in J. Earman, C. Glymour, and ]. 
Stachcl, eds., Minnesota Studiu in the Philo!ophy of Science, vol. VI1l 
(Minneapolis: University of Minnesota Press, 1977), pp. 3-49; footnote 29, in 
particular, presents an up-to-date exposition of the mathematics of the Helmholtz-Lie 
theorem. 

17 Helmholtz characterizes space as a "subjective form of intuition" in the sense 
of Kant, and as the "neceuary form o f our outer intuition," in his famous address on 
"Die Tatsachen in der Wahrnehmung" of 1878. Sec P. Hertz and M. Schlick, eds., 
Hermann v. Helmholtz: Schnften zur Erkenllllli!theorie (Berlin: Springer, 1921), p. 
117; translated as "The Facts in Perception," in Cohen and Elkana, eds. (note 14), p. 
124. Helmholtz viewed the condition of free mobility, in particular, as a necessary 
condition of the possibility of spatial measurement, and thus of the application of 
geometry. For discussion see the works cited in notes 15 and 16 above. 
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Now it was precisely this Helmholtzian view of physical geometry 
that set the stage, in turn, for the contrasting "conventionalist" 
conception articulated by Poincare. Indeed, Poincare developed his 
philosophical conception immediately against the background of the 
Helmholtz-Lie theorem, and in the context of his own mathematical 
wo.rk on group theory and models of hyperbolic geometry.18 Following 
Helmholtz and Lie, Poincare viewed geometry as the abstract study of 
the group of motions associated with our initia1ly crude experience of 
bodily "displacements." So we know, according to the Helmholtz-Lie 
theorem, that the space thereby constructed has one and only one of 
the three classical geometries of constant curvature. Poincare disagreed 
with Helmholtz, however, that we can empirically determine the 
particular geometry of space simply by observing the behavior of rigid 
bodies. No real physical bodies exacdy satisfy the condition of 
geometrical rigidity, and, what is more important, knowledge of physical 
rigidity presupposes knowledge of the forces acting on the material 
constitution of bodies. But how can one say anything about such forces 
without fust having a geometry in place in which to describe them? We 
have no option, therefore, but to stipulate one of the three classical 
geometries of constant curvature, by convention, as a framework within 
which we can then do empirical physics.19 Moreover, since Euclidean 
geometry is mathematically the simplest, Poincare had no doubt at all 
that this particular stipulation would always be preferred. 

We know that Einstein was intensively reading Poincare when he was 
creating the special theory of relativity in 1905, and it seems very 
plausible, accordingly, that Poincare's conventionalism played a 
significant role in philosophically motivating this theory.zo More 
specifically, whereas Poincare had argued, against both Kant and 
Helmholtz, that the particular geometry of space is not dictated by 

18 Poincare discovered his well-known models of hyperbolic geometry in the 
context of his work on "Kleinian groups" in complex analysis-which he then found, 
surprisingly, to include the isometrics of hyperbolic geometry. Poincare describes 
this famous discovery in the chapter on "Mathematical Invention" in S cienu e 1 

M ithode (Paris: Flammarion, 1908); translated as Science and Method, in G. 
Halsted, ed., The Fo11ndations of Science (Lancaster: The Science Press, 1913). For a 
discussion of the Poincare models see Torretti, Philosophy of Geometry, § 2.3.7. 

19 For a detailed analysis of Poincare's geometrical conventionalism along these 
lines see my Reconsidering Logical Positivism (note 1), chapter 4. 

20 See A. Miller, Albert Einstein's Special Theory of Relativity (Reading: 
Addison-Wesley, 1981 ), chapter 2. 
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either reason or experience but rather requires a fundamental decision 

or convention of our own, Einstein now argues, similarly, that 

simultaneity between distant events is not dictated by either reason or 

experience but requires a new fundamental definition based on the 

behavior of light.21 Moreover, Einstein proceeds here, in perfect 
conformity with Poincare's underlying philosophy, by "elevating" an 

already established empirical fact- the invariant character of the velocity 
of light in different inertial reference frames-into the radically new 
status of what Poincare calls a convention or ccdefinition in disguise" 

(here a deftnition of simultaneity).22 

As we also know, however, Einstein tells us in ccGeometry and 

Experience" that he needed to reject Poincare's geometrical . 
conventionalism in order to arrive at the general theory of relativity. In 

particular, E instein here adopts a Helmholtzian conception of (applied 

or physical) geometry as a straightforward empirical theory of the actual 
physical behavior of "practically rigid bodies," and he claims that 
"without [this conception] I would have found it impossible to establish 

the [general] theory of relativity." Here, as Einstein explains in the same 

passage, he has in mind the following line of thought.23 According to the 
principle of equivalence (based on the equality of gravitational and 

inertial mass) gravitation and inertia are essentially the same 

phenomenon. So, in particular, we can model gravitational fields b y 

"inertial fields" (involving centrifugal and Coriolis forces, for example) 

arising in non-inertial frames of reference. If we now consider a 

uniformly rotating frame of reference in the context of special relativity, 
we then find that the Lorentz contraction differentially affects measuring 

rods laid off along concentric circles around the origin in the plane of 

rotation (due to the variation in tangential linear velocity at different 

distances along a radius), whereas no Lorentz contraction is experienced 
by rods laid off along a radius. T herefore, the geometry in a rota ting 

21 Indeed, Poincare had himself already argued that distant simultaneity requires 
a convention or definition-also involving the velocity of light- in "La measure du 
temps," Rmu de Mitaphsique el de Morale 6 (1898), pp. 1-13; translated as "The 
Measure of Time," in Halsted ed. (note 18), pp. 223-34. 

22 For further discussion of this idea of "elevating" an already es tabli shed 
empirical fact to the status of what Poincare calls a convention-with special 
reference to the example of special relativity and the velocity of light-see my 
Dynami&s of Reason (Stanford: CSLI, 2001), pp. 86-9. 

23 See Geometrie und Erfahrung, pp. 6-7 Qeffrey and Perre tt, pp. 33-4). 
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system will be found to be non-Euclidean 
circumference to the diameter of concentric circles 

(the ratio 
around the 

D79 

of the 
• • • 

Ortgtn 1n 

the plane of rotation will differ from 1T and depend on the circular 
radius). 

The importance of this line of thought for Einstein is evident in 
virtually all of his expositions of the general theory, where it is always 
used as the primary motivation for introducing non-Euclidean geometry 
into the theory of gravitation.24 Moreover, as John Stachel has shown, 
this particular thought experiment in fact constituted the crucial 
breakthrough to what we now know as the mathematical and conceptual 
framework of general relativity.25 For, generalizing from this example, 
Einstein quickly saw that what he really needed for a relativistic theory of 
gravitation is a four dimensional version of non-Euclidean geometry 
(comprising both space and time). He quickly saw that a variably curved 
generalization of the flat Minkowski metric of special relativity should 
serve as the representative of the gravitational field, and, turning to the 
mathematician Marcel Grossmann for help, he then discovered the 
Riemannian theory of manifolds. Einstein's repeated appeal to the 
example of the uniformly rotating frame of reference in his official 
expositions of the theory therefore appears to reflect the actual 
historical process of discovery very accurately, and to explain, in 
particular, how the idea of a variably curved four dimensional space-time 
geometry was actually discovered in the first place.26 

24 See, for example, "Die Grundlage der allgemeinen Relativitatsthcorie," 
Annalen der Physile 49 (1916), p. 776-translated as "The Foundation of the General 
Theory of Relativity," in H. Lorentz, et. al., The PrindpLe of Rtlativity (London: 
Methuen, 1923), p. 117; Obtr die sptziellt und dit allgemeine Rtlativiliilslhtorit, 
gtmtinversliindlich (Braunschweig: Vieweg, 1917), §§ 23-8-translated (from the fifth, 
1918 edition) as Relativity, Tht Special and lht General Theory: A Pop 11 Ia r 
Exposition (London: Methuen, 1920); Tht Meaning of Relativity (Princeton: 
Princeton University Press, 1922), pp. 59-61. 

25 See J. Stachel, "Einstein and the Rigidly Rotating Disk," in A. Held, cd., G tnt ra I 
Relativity and Gravitation (New York: 1980); reprinted as "The Rigidly Rotating Disk 
as the 'Missing Link' in the History of General Relativity," in D. Howard and J. 
Stachel, eds., Einstein and the History of General Relativity (Boston: Birkhauser, 
1989), pp. 48-62. 

26 As is weU known, Einstein (and Grossmann) required several more years of 
struggle to find the final field equations of general relativity- during which, in 
particular, they were sidetracked by the now notorious "hole argument." See ]. 
Stachcl, "Einstein's Search for General Covariance, 1912-1915," (first presented in 
1980) in Howard and Stachel, eds. (note 25), pp. 63-100; J. Norton, "l-Iow E instein 
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Einstein's introduction of non-Euclidean geometry into physics thus 
followed a remarkably circuitous route and involved, in particular, a 
process by which Einstein delicately positioned himself within the 
debate on the foundations of geometry between Helmholtz and 
Poincare-a debate which was itself framed, as we have seen, by a 
nineteenth century tradition of mathematical work in group theory and 

projective geometry. In creating the special theory of relativity in 1905 
Einstein took inspiration from Poincare's conventionalist scientific 
epistemology-not, however, as applied to spatial geometry but rather 
to what we now call the (four dimensional) geometry of space- time. 
Once the special theory was in place Einstein then faced a radically n ew 
situation in the theory of gravitation, for the Newtonian theory of 
universal gravitation-based, as it was, on an instantaneous action at a 
distance and thus on absolute simultaneity-was itself incompatible with 
the new conceptual structure of the special theory based on a relativized 
conception of simultaneity. Einstein was therefore faced with the 
problem of adjusting the theory of gravitation to this new relativistic 
conceptual structure, and he addressed this problem, in the first 
instance, by appealing to the already well-established empirical fact that 
gravitational and inertial mass are equal. This fact led him to his principle 
of equivalence-the idea that gravitation and inertia are the very sam e 
physical phenomenon-which he then applied, as we have seen, to non
inertial frames of reference (accelerating and rotating frames) within th e 
conceptual structure of the special theory (within what we now call 
Minkowski space- time) .27 This led him, in turn, by the example of the 
uniformly rotating frame, to a non-Euclidean spatial geomt::try (now 
linked to the action of a gravitational field), which he was then able, 
finally, to generalize to the non-Euclidean space-time geometry of 

general relativity. 

Moreover, the crucial thought-experiment of the uniformly rotating 
frame of reference essentially involved, as Einstein tells us in "Geometry 

Found His Field Equations, 1912-1915," Historical St11dies in Tht Physical S citncu 
14 (1984), reprinted in Howard and Stachel, cds., pp. 101-59. The present point, 
however, is that the essential mathematical structure required by general relativity
the idea of representing gravitation by a variably curved four dimensional space
time metric-had already been articulated by 1912. 

27 ror an outstanding analysis of Einstein's use of the principle o f equivalence in 
this coonccdon see J. Norton, ''What Was Einstein's Principle of Equivalence?" 
St11diu in History and Philosophy of Scienct 16 (1985); reprinted in Howard and 

Stachcl, eds., pp. 5-4 7. 
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and Experience," a naively Helmholtzian rather than a sophisticated 
Poincare-inspired perceptive on the relationship between the behavior 
of rigid bodies and physical geometry. Indeed, it was necessary for 
Einstein to have already rejected the more sophisticated perspective on 
rigid bodies suggested by Poincare in creating the special theory of 
relativity. For, as is well known, Poincare was actually the fust person to 
discover what we now know as the Lorentz group governing inertial 
reference frames in special relativity, and Poincare had formulated, 
accordingly, a Lorentzian version of the mathematics of special relativity 
still in some sense committed to a classical aether.28 For Poincare, we 
might say, the Lorentz group thus operated at the level of 
electrodynamics-governing the microscopic electromagnetic structure 
ultimately responsible for physical rigidity-but not, as in Einstein, at the 
more fundamental kinematical level governing the basic concepts of 
space, time, and motion formulated prior to and independently of any 
paiticular dynamical theory. Just as, in the special theory, Einstein takes 
the Lorentz contraction as a direct indication of fundamental kinematical 

structure, independently of all dynamical questions about the micro
physical forces actually responsible for physical rigidity, here, in the 
example of the uniformly rotating reference frame, Einstein similarly 
takes the Lorentz contraction as a direct indication of fund amen tal 
geometrical structure. And without this remarkably circuitous 

proceduie of delicately situating himself, as it were, between Helmholtz 
and Poincare, it is indeed hard to imagine how Einstein could have eve r 
discovered the idea of a variably curved four dimensional space-time 
geometry in the first place.19 

28 See Miller, Einstein's Special Theory (note 20), § 1.14. In the Lorentz-Fitzgerald 
theory of the electron-a version of which Poincare accepts-the Lo rentz 
contraction is of course a genuine physical or dynamical phenomenon (judged from 
the point of the privileged "aether" frame), ultimately due to the microphysical 
effects of electromagnetic forces. 

29 rrom our present, post-general-relativistic point of view, the most natural 
procedure is to begin with the flat four dimensional geometry of Minkowski space
time and then use the principle of equivalence to motivate the idea that freely falling 
trajectories can be conceived as geodesics in a variably curved "pertu rbation" o f an 
initially flat Minkowski geometry. This line of thought was definitely not available in 
the actual historical context within which general relativity was created, however. For, 
on the one hand, Einstein did not appreciate the importance of Minkowski's four 
dimensional reformulation of special relativity until after be had already created the 
general theory. And, on the other band, no one but Einstein bad the idea of 
exploiting the well-known equivalence between gravitational and inertial mass. In 
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There is an important sense, however, it which this same idea of a 
variably curved space-time geometry, once discovered, renders the 

preceding debate between Helmholtz and Poincare quite irrelevant. For, 

as we have suggested, this debate is itself framed by the H elmholtz-Lie 
theorem and is therefore limited-along with the entire Kleinian 

tradition in group theory and projective geometry within which it is 

articulated-to spaces of constant curvature. But the general theory of 

relativity, of course, employs a space-time of variable curvature

dependent on the distribution of matter and energy-where 

Helmholtz's principle of free mobility therefore fails. As a result, the 
characteristically late nineteenth century conception of pure geometry 

as describing the "perspectival" features of our spatial intuition also fails, 
and we are left with the characteristically twentieth century conception, 

originally derived from the work of Hilbert, of pure mathematical 
geometry as an abstract deductive system having no intrinsic relation at 

all to our spatial perception or any other kind of experience.30 So it is no 
wonder, in the end, that E instein appeals in ((Geometry and Experience" 

to precisely this Hilbertian conception. 

Indeed, as we have seen, Einstein bases this appeal, more generally, 
on Schlick's elaboration of the notion of "implicit definition" in his 

General Theory of Knowledge-which is itself based, in the present 

context, on Schlick's virtually simultaneous work on the philosophical 

particular, Minkowski himself was engaged in an attempt to formulate a relativistic 
theory of gravitation by a generalized action-at-a-distance theory: for discussion sec 
L. Corry, "H ermann Minkowski and the Postulate of Relativity," Archive for I h t 
History of the Exact Sciences 51 {1997), pp. 286-92. Thus, the only effective line of 
thought available at the time was the one Einstein actually followed: beginning from 
a three dimensional formulation of special relativity we apply the principle of 
equivalence to (three dimensional) non-inertial reference frames, and we are then 
led via the example of the rotating frame of reference to a (three dimensional) non
Euclidean spatial geometry-which we are only at this point in a position to 
generalize to a (four dimensional) non-Euclidean space-time geometry. 

30 Riemann's theory can be seen as an intermediate stage in this development, 
where geometry in the sense of the theory of manifolds is characterized non 
intuitively and in this sense purely conceptually within analysis (in terms of n -tuples 
of real or complex numbers). It is Hilbert, however, who creates the first purely 
conceptual (abstract) synthetic geometry, and who then clarifies the relationship 
between geometry in this (axiomatic) sense and analysis via a representation 
theorem. For discussion of Hilbert's achievement see Torretti, Philosophy of 
Geometry, § 3.2.8. 
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significance of the general theory of relativity.3 1 Here, io particular, 

Schlick portrays the variably curved space-time of general relativity as an 

entirely abstract, entirely non-intuitive "conceptual construction," which 

can only be related to experience and the physical world by an entirely 

abstract, entirely nonintuitive relation of "designation" or "coordination" 
in virtue of which the purely mathematical "conceptual construction" 

represented by Einstein's formulation of the general theory of relativity 

can then receive empirical content by being interpreted io terms of 
physical m eas urement.32 And it is precisely here, in this procedure of 

physical coordination, that Schlick find s that Poincare's conventionalist 
philosophy of geometry still holds. In particular, we still have a choice 

whether to use a non-E uclidean or a Euclidean physical geometry even 

within the context of Einstein's new theory: it is just that in the latter case 
we would have to introduce further complications into the simple and 

"natural" physical coordination effected by Einstein's principle of 
equivalence (which directly coordinates freely falling bodies affected 

only by gravitation to the four dimensional space-time geodesics of a 
variably curved, non-Euclidean space-time geometry), and we would 

thereby introduce onerous complications into our total system of 

geometry plus physics. But Poincare had himself maintained that only 
mathematical simplicity explains our preference for E uclidean spa tial 
geometry, and all we are now doing, in the context of Einstein's new 

theory, is extending Poincare's viewpoint to space-time geometry.33 

31 Sec M. Schlick, Raum und Zeit in der gegenwiirtigen Physik (Berlin: Springer, 
1917); transla ted (from the fourth, 1922 edition) as Space and Time in Co ntemporary 
Physics, in H. Mulder and B. van de Veldc-Schlick, eds., Mon·tz Schlick: 
Philosophical Papers, vol. 1 (Dordrecht: Reidel, 1978), pp. 207-69. Einstein himself 
had given Schlick considerable help on this very influential exposition of the general 
theory. For discussion see D. Howard, " Realism and Conventionalism in Einstein's 
Philosophy of Science: The Einstein-Schlick Correspondence," Phi I os op hi a 
Natura/is 21 (1984), pp. 616-29. 

32 See the final chapter of Space and Time (note 31), " Relations to Philosophy," 
which, in tum, is closely related to Schlick's discussion of the "method of 
coincidences" in General Theory of K_nowledge, § 30 (§ 31 of the second edition). 
For further discussion see my "Geometry as a Branch o f Physics" (note 3). 

33 Schlick becomes fully clear about this ex tension of Poincare's 
conventionalism to general relativity itself only in the fourth (1922) edition of Space 
and Time and the second (1925) edition of General Theory of Kn owledge. For 
discussion see again my "Geometry as a Branch of Physics." The key idea is that 
Euclidean geometry can be retained by introducing what Reichenbach calls 
"universal forces" in §§ 5-7 of The Philosophy of Space and Time. And we can 
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This attempt to link Poincare's conventionalist philosophy of 
geometry and the general theory of relativity is certainly plausible, and, 
as we know, it has been extraordinarily influential in twentieth century 
scientific thought. Nevertheless, it is subject to very deep difficulties 

from our present, post-conventionalist point of view. In the first place, 
the problem of coordination as Schlick understands it-the problem of 
relating an abstract ((conceptual construction" to concrete e mpirical 
reality-did not exist for Poincare. Poincare's own work on geometry
both mathematical and philosophical-is entirely framed, as we have 
seen, within the late nineteenth tradition in group theory and projective 
geometry associated with Klein's Erlanger program. Pure geometry, in 
this tradition, is by no means an uninterpreted axiomatic system but 
rather an expression of the abstract ((perspectival" features of our spatial 
intuition or perception. Geometry, on this conception, therefore has 
space as its object-the very space in which we live, move, and 
perceive; and so the problem of coordination or "designation" as 
Schlick understands simply does not arise. Indeed, this problem, as we 
have seen, is in an important sense a product of Schlick's assimilation of 
the radically new conception of space and geometry embodied in 
Einstein's theory of relativity, not something that was present and 
available all along. 

In the second place, and even more importantly, Poincare's 
conception of space and geometry is also entirely based, in accordance 
with this very same late nineteenth century tradition, on the principle of 
free mobility first formulated by Helmholtz and later brought to precise 
mathematical fruition in the Helmholtz-Lie theorem. For it was this 
principle that formed the indispensable link between pure or 

understand this most clearly and precisely, from our presen t point o f view, in the 
context o f the Cartan-Trautmann reformulation of the original Newtonian theory of 
gravitation-which is based, like general relativity, on the principle of equivalence 
and which, accordingly, employs a variably curved four dimensional space- time 
structure (an affine connection) to represent the action of gravity. When we then 
recover the traditional formulation-which is based, from a modern point of view, 
on a flat four dimensional space-time structure (affine connection)-gravity in the 
traditional (Newtonian) sense appears as precisely a " universal force" in the sense o f 
Reichenbach. Following Reichenbach's methodological prescription to "set universal 
forces equal to zero," in this context, therefore amounts to adopting the principle of 
equivalence and rejecting the traditional flat space-time structure. For discussion of 
the Cartan-Trau tmann formulation in this regard see my Foundation! of Space-Time 
Theoriu: Re/ativi!tic Phy!iC! and the Philo!ophy of Science (Princeton: P rinceton 
University Press, 1983), §§ III. 4, III.8. 
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mathematical and applied or physical geometry within the nineteenth 
century tradition in question. Here the relationship between pure and 
applied geometry is not of course understood as that between an 
uninterpreted axiomatic system and a possible (empirical) 
interpretation of that system; it is rather understood as a relationship 
between the otherwise empty space in which material bodies are 

contained and these material bodies themselves-as a relationship, in 
the original Kantian sense, between a form of intuition and the physical 
objects or material ((content" contained within that form. Unlike in the 

original Kantian conception, however, we are now operating within a 
generalization of the notion . of form of intuition to include all spaces of 
constant curvature; and, in this context, the principle of free mobility 
then serves as our crucial coordinating principle-our crucial link 
between pure and applied geometry-by coordinating purely 
geometrical notions, like that of geometrical equality or congruence, for 
example, to the idealized behavior of physical rigid bodies.34 

And it is precisely here, in the context of the Helmholtz-Lie 
theorem, that a remarkable conceptual situation then arises. For it then 

turns out that there are three and only three possible geometries 
compatible with the principle of free mobility-and therefore 
compatible, as we have seen, with our fundamental coordinating 
principle linking pure and applied geometry. Our fundamental 
coordinating principle leaves the choice of Euclidean or non-Euclidean 
geometry entirely open, and it thus makes perfectly good sense, in this 
very special conceptual situation, for Poincare to maintain that the 
choice of Euclidean geometry is then determined by a convention or 
stipulation based on its greater mathematical simplicity. In the radically 
new conceptual situation created by the general theory of relativity, 
however, this particular view no longer makes sense. Not only is the 
space-time structure of general relativity incompatible with the 
fundamental presupposition of the Helmholtz-Lie theory, the principle 
of free mobility, but, in the general theory, there is only one empirically 
meaningful way to effect the required coordination between our purely 
mathematical formulation of the theory (now conceived as a purely 
formal "conceptual construction") and concrete physical reality
namely, the principle of equivalence, which directly coordinates the 

34 For discussion of free mobility as a coordinating principle for physical 
geometry see R. DiSalle, "Spacetime Theory as Physical Geometry,, Erkenntnis 42 
(1995), § 2. 
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purely mathematical notion of a (semi-)Riemannian space-time geode sic 

with the behavior of freely falling bodies affected only by gravitation. 
Here, unlike in the very special situation addressed b y 
Poincare, we are no t faced with what we might call a common or gene ric 
coordinating principle, which leaves the more specific geometrical 
structure for physical space still open, but rather with a singular or 
unique coordinating principle (the principle of equivalence) compatible 
with one and only one geometrical structure: the geometrical structure . 
for physical space-time described in Einstein's formulation of general 
relativity.35 Here the idea of an arbitrary or conventional choice of 

physical geometry has itself lost all real meaning and application- both 
from a mathematical and an empirical point of view. 

By contrast, Einstein's own engagement with the problematic of 
conventionalism, and, in particular, with the debate on the foundations 
of geometry between Helmholtz and Poincare, was an especially timely 
and fruitful one. It allowed him, as we have seen, to take the critical step, 
via the principle of equivalence, from the interpretation of three 
dimensional, non-Euclidean spatial geometry to that of four dimensional, 
non-Euclidean space-time geometry. And it is in precisely this sense, we 
might say, that Einstein himself made the crucial transltton from 

nineteenth to twentieth century philosophy of physical geometry. One 
unforeseen consequence, however, was that the fundamentally new 
perspective on the foundations of geometry actually created by Einstein 
in this way-the idea of geometry as fully a branch of physics-has 
proved much more difficult to grasp than it otherwise might. In 
particular, in the characteristically twentieth century philosophy of 
geometry bequeathed to us by logical empiricism, we remained 
preoccupied with the problematic of conventionalism and the behavior 
of rigid bodies long after these had lost all specific relevance to physical 
theory-where a new concern for space-time geometry and the 

35 In particular, to abandon the principle of equivalence and allow non-zero 
"universal forces" is to introduce empirically meaningless clements into one's 
formulation admitting no (univocal) coordination with empirical phenomena (see 
note 33 above). From the point of view of the Cartan -Trautmann formulation, for 
example, traditional Newtonian gravitation theory involves an arbitrary choice of flat 
affine connection plus gravitational potential that is not un iquely determined by th e 
empirical local motions. By contrast, the principle of equivalence itself avoids a ll 
such arbitrariness by directly coordinating a non- flat affine connection with the 
empirical local behavior of freely falling bodies. f'or further discussion see m y 
Foundations of Space-Time Theories (note 33), §§ V.4, VI1.2. 
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(essentially four dimensional) problem of motion can now be seen as 
the true successor to the late nineteenth century tradition in the 
mathematical and philosophical foundations of geometry that was 
subject to a far-reaching and radical transformation in the work of 
Einstein. 

• 

I would like to conclude by suggesting two more general morals 
about the relationship between philosophy and the sciences that arise 
from our survey of this particular episode in the transition between late 
nineteenth and early twentieth century scientific thought. In the first 
place, Einstein,s engagement with nineteenth century philosophical 
reflection on the foundations of geometry illustrates an important 
feature of the role of such reflection during truly revolutionary scientific 
transitions. In particular, when we move from one scientific conceptual 
framework to a radically different one there is necessarily an 
intermediate stage in which we are still in the process of transfo rming 
the earlier framework but have not yet clearly articulated the later one. 
There necessarily comes a point, as it were, when we are operating 
within neither the one nor the other and are, in fact, caught in a deeply 
problematic (but nevertheless intensely fruitful) state of inter
paradigmatic conceptual limbo. This is illustrated, in the present case, 
not only by the circumstance that Einstein fttst applied the principle of 
equivalence to what we now conceive as the flat geometrical structure of 
Minkowski space-time (where, more specifically, there is as yet no four 
dimensional space-time curvature), but, even more strikingly, by the fact 
that the preceding philosophical debate on the foundations of ge ometry 
was framed by the Helmholtz-Lie theorem and was thereby limited to 
spaces of constant curvature. Since the whole point of the general 
theory of relativity, in the end, is to describe gravitation by a four 
dimensional manifold of variable curvature, there is an important sense, 
as we have seen, in which the final articulation of the general theory 
rendered the entire preceding debate irrelevant. Nevertheless, as we 
have also seen, Einstein,s ftnal articulation and elaboration of this theory 
was essentially mediated by precisely this philosophical debate, without 
which it is indeed hard to imagine how the application of non-Euclidean 
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geometry in physics could have ever been envisaged as a genuinely live 
alternative.36 

This leads me to my second moral. It is tempting, when con sidering 
the relationship between mathematics, physics, and philosophy, to 

adopt a simplified linear model: pure mathematics develops possible 
structures that may be applied in physics, physics surveys the available 

structures developed by pure mathematics so as to choose an 
appropriate one for representing some or another physical 

phenomenon, and philosophy then reflects on this process so as to 

develop its own doctrines in scientific epistemology and the philosophy 

of science. In the present case, such a sequence might run: Riemann 

formulates the mathematical theory of manifolds, E instein applies this 
theory in general relativity, and logical empiricism then initiates 

twentieth century philosophy of geometry by reflecting on Einstein's 

achievement. Our discussion, brief and selective as it is, has still shown, I 
hope, that this simplified linear model is entirely inappropriate. It is 

impossible, in fact, neatly to separate the contributions of mathematics, 
physics, and philosophy in this way, and it is impossible, in particular, to 

arrange their respective contributions in a linear sequence. We are rather 
faced with a highly complex and intensely non-linear process of 

development wherein mathematics, physics, and philosophy are 

mutually interacting, and then interdependently evolving, at every stage. 

This process begins, in the present case, when scientific thinkers of 

the late nineteenth century- principally Riemann, Helmholtz, and 
Poincare- formulate new perspectives on the nature o f geometry, from 

both mathematical and philosophical points of view, against the 

background of the original Kantian attempt to comprehend the 

indispensable role of specifically Euclidean geometry within the 
Newtonian theory of universal gravitation. The creation of non-Euclidean 

geometries within pure mathematics was of course the single mo s t 
important stimulus to these new developments, but they were also 
framed, as we have suggested, by philosophical concerns going back to 
Kant, by the question of what it could now mean to apply non-Euclidean 

geometry within physical theory, and even, especially in Helmholtz's 
case, by parallel developments within p sycho-physiology. Indeed, it was 

36 See again note 29 above. For further discussion of this . 
paradigmatic conceptual limbo, in the context, once agatn, 
development of th e theory of relativity, see my Dynamics of Reason 

Two,§§ 3, 4. 

idea of inter
of Eins tein's 

(note 22), Part 
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precisely this very complex set of interrelated mathematical, 
philosophical, and what we might call proto-physical developments 
which then set the stage for Einstein's creation of the theory of relativity. 
In particular, when Einstein initially hit upon the idea of an application of 
non-Euclidean geometry to the theory of gravitation he was entirely 
ignorant of the Riemannian theory of manifolds. He instead located his 
theorizing within the quite different nineteenth century tradition in the 
foundations of geometry associated with the work of Klein, as he 
delicately positioned himself, as we have said, within the debate between 
geometrical empiricism and conventionalism in the work of Helmholtz 
and Poincare. The new theory Einstein actually arrived at then turned out 
to be incompatible with the fundamental assumption of this tradition, 
the principle of free mobility, and it was for precisely this reason, in 
fact, that the mathematics ultimately needed was the much more general 

theory of manifolds (including spaces of variable curvature) due to 
Riemann. But there was no direct conceptual route from Riemann's 
mathematical work to Einstein's new physical theory-which was 
instead essentially mediated by the debate between Helmholtz and 
Poincare on the precise role and significance of rigid bodies in (three 
dimensional) physical geometry. Moreover, despite the fact that 
Einstein's finished theory, in an important sense, rendered the entire 
preceding debate irrelevant, the very salience of this debate in the 
process of Einstein's creation of the theory propelled twentieth century 
philosophy of geometry onto a continuation of the problematic initiated 
by Helmholtz and Poincare-a continuation, as I have argued, which 
then proved to be incoherent. Yet my ultimate concern, finally, is not to 
drive one more nail into the coffin of geometrical conventionalism but 
rather to begin to convey a sense of the incredible richness of mutual 
interaction between physics, philosophy, and the foundations of 
mathematics for which the transition between late nineteenth and early 
twentieth century scientific thought provides us with an unsurpassed 
example. 

Indiana University 


