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INTERDERIV ABU.I1Y OF SEEMINGLY UNREIATED 
MATIIEMATICAL ST~ S AND 1HE 

PimOSOPHY OF MATHEMATICS 

GUILLERMO E. ROSADO HADDOCK 

S 1 The Problem 

Interderivability of mathematical statements on the basis of certain 
assumptions or, brlefly, mathematical equivalence of two statements in a 
determined area of mathematics is a relatively common phenomenon in 

• 
the mathematical sdences. That two mathematical statement S and S' in 
general topology-or in group theory, or in number theory-are ínter
derivable, is a familiar mathematical phenomenon. That a group G has 

property P if and only if it has property P', or that a topological space T 

has property Q if and only if it has property f1 seems completely natural 
both to the mathematidan and to the philosopher of mathematics. 

However, that mathematical statements of the most diverse areas of 
mathematics and apparently speaking about very different things, are in
terderivable, does not seem so natura l. That a mathematical statement 
that speaks about well-ordered sets is interderivable, under Zermelo
Fraenkel set theory (from now on ZF),1 with, e .g . a statement about vec
tor spaces, or with a statement about topological spaces, or with a 
statement about the cardinality spectrum of models of sets of first order 
sentences, seems bizarre and at first sight highly implausible . 

But precisely that seemingly implausible situation occurs in classical 
mathematics, and its philosophical significance has been neglected. 

1 From now on we will most frequently simply write 'interderivable ' and 
'mathematically equivalen[' instead of 'interderivable under ZF' o r 'mathematically 
equivalent under ZP'. Throughout this pape r all four expressions are taken as 
synonyms. 
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Under ZF, the Ultrafilter Theorem, namely, the statement that says that 
every filter on a set can be extended to an ultrafilter, is interderivable, 
e .g. with the following three statements:2 

(1) On each infinite set there is a two valued additive measure such 
that each singleton has measure zero. 

(2) The product of any family of compact Hausdorff spaces is a com
pact Hausdorff space. 

(3) Compactness Tbeorem for ftrst order logtc: A set S of first order 
sentences has a model if and only if every finite subset of S has a 
model. 

For anyone acquainted with the concepts occurring in those four 
mathematically equivalent statements, it is clear that these statements 
speak about different and seemingly unrelated things. 

A still more dramatic, but essentially similar, situation is that of the in
terderivabiüty, under ZF, of the Axiom of Choice with many other 
mathematical statements in the most diverse areas of mathematics (and 
logic). The Axiom of Choice states that, given any family ~ of non-empty 
pairwise disjoint sets, there exists a function f such that for each set S in 

'!f, ! CSJ e S, i.e. the function selects from each set S in '!f a representative 
of S. As a way of further illustrating the interderivabiüty phenomena be
tween seemingly unrelated mathematical statements, Jet us consider the 
following list of á few of the many mathematical equivalents of the 
Axiom of Choice: 

(1) Well Orderlng Tbeorem: Every set can be well-ordered. 
(2) Zom Js Lemma: If '!f is a family of sets such that the union of every 

chain <€ e C!f is in <§, then C§ contains a maximal set under inclusion. 
(3) Every lattice with a unit and at least another element has a maximal 

ideal. 
( 4) If V is a real vector space, then for every subspace CJ' of V there is a 

subspace CJ'' of V su eh that CJ' ~ CJ" = (O} and CJ' u CJ'' generares V . 

2 Both for the equivalents of the Ultrafuter Theorem and for those of the Axiom of 
Choice, see G. H. Moore, Zermelo's .Axiom of Choice, New York: Springer, 1982. See 
especially p. 328 for equivalents of the Ultrafilter Theorem and pp. 330-333 for 
equivalents of the Axiom of Choice. See also H. Rubin and J. E. Rubin's Equiválents of 
tbe Axiom of Choice, Amsterdam: North Holland, 1963 or Equivalimls of tbe Axiom of 
Choice, II, Amsterdam: North Holland, 1985. 
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(5) UJwenbetm-Skolem-Tarskl Tbeorem: If a countable set of first order 
sentences has an infinite model, then it has a model of each infinite 
cardinality. 

(6) Tycbonoff's Compactness 1beorem: The product of any family of 
compact topological spaces is a compact topological space. 

For any one familiar with the con~pts occuning in the Axiom of 
Choice and its six mathematical equivalents dted immediately above, it is 
clear that they all speak about very different things, e .g. about choice 
functions, well orderings, lattices, real vector spaces, compact topological 
spaces, and the cardinality spectrum of models of countable sets of first 
order sentences. 

The problem that we would like to consider in this paper and that 
seems not to have received its due attention by philosophers of mathe
matics is whether such interderivability phenomena of seemingly unre
lated mathematical statements have any relevance for the philosophy of 
mathematics or are completely neutral with respect to our choice of a 
particular philosophy of mathematics. More explictly, we ask if all 
philosophies of mathematics can fare well with respect to these phe
nomena. 

1 2 A Brief Examination of some Philosophies of Mathematlcs 

1t would be a formidable and rather boresome task to examine in de
taH the wide variety of philosophies of mathematics with respect to the 
problem in which we are interested here, namely, rendering philosoph
ically intelllgible the interderivability phenomena of seemingly unrelated 
mathematical statements. However, sorne brief remarks seem appropriate 
in order to motívate defenders of at least sorne philosophies of 
mathematics to try to assess such interderivability phenomena from the 
standpoint of their respective conceptions of the nature of mathematics. 
The burden of the proof is on their side. Of course, they can ignore that 
burden simply by rejecting those phenomena as not belonging to 
mathematics as they conceive it. But in this way they would be depriving 
mathematics of sorne of its philosophically most puzzling results. 

( a) For sorne phüosophies of mathematics, however, there is no other 
possibility than to explicitly reject or simply ignore such interderivability 
phenomena. A formalist philosophy of mathematics like the one timidly 
advocated by Paul Benacerraf at the end of his "What numbers could not 
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be'",3 which does not accept the existence of numbers, but only of 
number words and, hence is not very different from the formalism 
aitidzed by Frege a hundred years ago , would surely not accept the 
existence of, e.g. topological spaces, vector spaces, lattices or ultrafilters, 
but at best that of topological space words, vector space words, lattice 
words, etc., whatever that may mean. Even the formulation of the 
statements in the two lists of mathematically equivalent statements of §1 

would seem extremely bizarre, and their mathematical equivalence 
would be completely unintelligible. 

( b) Contemporary nominalists are probably ontologically more liberal 
than the (sorts of) formalists that we have been considering. According to 
Eberle,4 contemporary nominalists postulate the existence of concrete 
individuals, but reject the existence of numbers, classes or other abstract 
entities. Of course, ultrafilters, lattices, vector spaces, topological spaces 
and such, as they are understood in classical mathematics, are clearly 
abstract entities. Nominalism has to deprive classical mathematics of 
sorne of its dearest parts, and at best try to construct a parallel 
mathematics- as LeSniewski did with his mereology as a possible 
substitute for set theory. But then the interderivability phenomena that 
we have been considering remain completely unintelligible for 
nominalism, since the statements that are proved to be mathematically 
equivalent speak about entities that are based on the classical notion of 
set and not on its mereological surrogate or on any other sort of nomi
nalist substitute, which cannot have the same properties as sets. (E.g. in 
set theory-and in general topology, which is based on it one distin
guishes between a unit set and its unique member, whereas in mereo
logy a mereological unit class is identitied with its unique member or 
part, since mereology is a part-whole theory). 

(e) Constructivism in mathematics is a particularly popular philo
sophical trend. The most basic difficulty with constructivism as a philos
ophy of mathematics, however, seems to lie in the term 'constructivism' 
itself. There does not seem to be any generally accepted predse meaning 

3 "What numbers could not be", in P. Benacerraf and H. Putnam (eds.), Pbilosopby 
of Matbematics, second edition, Cambridge: Cambridge University Press, 1983, pp. 272-
294. 

4 Rolf A. Eberle, Nominalistic Systems, Dordrecht: ReideL 1970, p. 6. 
• 
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of that term. According, to Beeson,s by a constructivist philosophy of 
mathematics one understands a philosophy of mathematics based on the 
following two basic prindples: 

(1) to say that "x exists" means that there is a way to explidtly find x; 
(2) the word "truth" does not have any a priori meaning, and a sen

tence is called 'true' just in case that a proof of it can be found. 

The preceding characterization, however, is not sufficiently informa
tive, since not only the philosophical preconceptions that underlie 
different constructivist schools can vary, but their notions of a mathemati
cal proof can be very different and, thus, the results that the different 
constructivist schools consider mathematically sound can diverge essen
tially. Even in the most important constructivist school of this century, 
namely, intuitionism, there has been sorne disagreement conceming what 
should be considered mathematically sound.6 Of course, if the 
philosophical preconceptions and the notion of a mathematical proof are 
too restricted, sorne of the entities spoken about in the statements 
belonging to either of the two lists of mathematically equivalent state
ments of §1 could not be constructed and many of the theorems related 
to those entities could not be obtained. E.g. the Axiom of Choice itself 
would certainly be considered mathematically inadmissible and the talk 
about different infinite cardinalities in the Lowenheim-Skolem-Tarski 
Theorem would be regarded as meaningless by many constructivists. 
Thus, if constructivism is understood in a too restrictive way, there is no 
hope of philosophically assessing the interderivability results under dis
cussion. For such constructivisms those interderivability phenomena 
would be almost as unintelligible as for formalists and nominalists. 

5 Michael J. Beeson, Foundations of Constructive Matbematics, Berlin: Springer, 
1985, p. 47. Beeson's constructivism follows that of Errett Bishop's Foundations of 
Constructive Analysis, New York: McGraw-Hill, 1967. See Ch. III of Beeson's book for 
other sorts of constructivism, to which one can add, e.g . l . Kant's remarks on 
mathematical method in Kritik der reinen Vernunft, 1781, second edition 1787, 
especially Part ll: Transzendentale Methodenlehre, and M. Dummett's recent 'linguistic 
intuitionism' in Elements of lntuitionism, Oxford: Oxford University Press, 1977, and in 
'The Philosophical Basis of Intuitionistic Logic', in P. Benacerraf and H. Putnam (eds.), 
op. cit. in footnote 3, pp. 97-129. 

6 See, e.g. E. W. Beth, The Foundations of Matbematics, Amsterdam: North Holland, 
1965, Ch. 15, § 142, especially pp. 437-439. 

125 



We are not interested, however, in restricting in any way the notion 
of constructivism to win our case. Thus, let us suppose that there is a 
constructivism so liberal that it allows its defenders to acknowledge the 
existence of the same entities and to obtain the same theorems as classi
cal mathematicians-with the only difference that sorne divergent 
methods are required, since they have to 'construct' the mathematical 
entities. Even in such a case, the interderivability results under discussion 
would remain a complete mystery for them. Since the entities spoken 
about in the two lists of mathematically equivalent statements of §1, 

namely, lattices, ultrafilters, topological spaces, vector spaces, cardinality 
spectra of models of sets of flrst order sentences, etc. differ considerably 
and have so diverging properties, even if all of them can be constructed 
and all corresponding theorems about them proved, the interderivability 
results would be philosophically as unintelligible for such a liberal 
constructivism as if, e.g. the statements 'Paris is the capital of France' 
were interderivable with the statement 'Plato was Aristotle's teacher.' 
What would be constructed by such a liberal constructivism are lattices, 
ultrafilters, topological spaces, etc., which are clearly very different 
mathematical entities. The interderivability of, e.g. the LOwenheim
Skolem-Tarski Theorem, Tychonoffs Theorem and Zorn's Lemma is in 
need of a philosophical assessment. But an adequeate assessment cannot 
be made if one assumes that all entities spoken about in such mathemat
ical statements are constructed by (the community oO mathematical 
subjects. Hence, we have to conclude that no matter how liberal a con
structivist philosophy of mathematics might be, it is incapable of an ad
equate philosophical assessment of the interderivability phenomena un
der discussion. 

(d) After Frege's7 and Husserl's8 critiques of Mill's empiridsm in 
mathematics and logic, one might have thought that empiridsm con
cerning these disciplines would not reenter the philosophical scenario. 
Even logical empiricists clearly restricted their empiricist claims to other 
areas of science. In the last few decades, however, and probably under 

7 See G. Frege, Die Grundlagen der Aritbmetik, 1884, Centenarausgabe, edited and 
with an introduction by Christian TitieJ, Hamburg: Meiner, 1986, especially §§ 7-10. 

8 See E. Husserl, Logische Untersuchungen, 1900-1901. Bd. I, in Husserliana, Vol 
XVIII, Den Haag: Nijhoff, 1975, especially Ch. V. 
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the influence of sorne rernarks by Quine,9 ernpiricism in logic and 
rnathernatics has rather shyly reappeared. Thus, it seerns appropriate to 
examine how well does ernpiridsm fare with respect to the problern that 
we have been discussing, namely, the philosophical assessment of the 
interderivability of seemingly unrelated rnathernatical staternents. 

Contrary to the other currents in the philosophy of mathematics 
briefly considered above, mathernatical ernpiricism usually does not re
nounce frorn the outset to large parts of classical mathernatics. The basic 
problern with empiridsrn of whatever sort is to formulate a convindng 
theory of how is it that we come to consider so highly abstract rnathe
rnatical entities as ultraproducts, toposes and rnany others on a more or 
less thin ernpirical basis, and how is it that on such a basis we obtain 
rnathernatical knowledge about such entities. The burden of the proof is 
clearly on the side of rnathernatical empiricsts. Moreover, if the ernpirical 
data accepted are so thin as those of (the sort of) behaviourisrn pre
supposed by Quine,lO there is no hope of cornpleting the task. If the 
ernpirical basis is such as to allow the so-called indeterminacy of transla
tionll and the so-called subdeterminacy of physical theories,12 there is 
certainly no possibility of explaining our acquaintance with ultraproducts, 
topological spaces, algebras, etc. and our rnathematical knowledge 
concerning thern. Such entities and their properties are much farther 
away frorn any ernpirical basis than languages or physical theories. 
Moreover, our mathernatical knowledge presupposes language (or sorne 
sort of symbolic system of representing concepts), and the collective 
rnathernatical knowledge of the rnathematical cornmunity presupposes 
the translatability of rnathernatical texts. Our rnathernatical knowledge not 
only cannot be obtained from such a thin ernpirical basis, but- if Quine's 
indeterminacy thesis of translation is correct-is hardly compatible with 
it. 

9 See, e.g. W. O. Quine, 'Two Dogmas of Empiricism', in From a Logical Point of 
View, 1953, second edition, Cambridge MA: HaNard University Press, 1961, pp. 2o-46, 
especially pp. 42-46. See also his Pbilosopby of Logic, Englewood Cliffs: Prentice Hall, 
1970, especially Ch. 7. 

10 See, e.g . W. O . Quine, Word and Object, Cambridge, MA: MIT Press, 1960. 

11 !bid., especially Ch. ll. 
12 See, e.g. 'Two Dogmas of Empiricism', p . 43. 
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Sorne mathematical empiricists, like Kitcher,13 would probably say 
that the empirical basis does not have to be so thin and that one should 
allow the mathematical subject more freedom for constructing mathe
matical entities. Kitcher even speaks about an idealized mathematical 
subject.14 In such a case, it seems pertinent to ask if this idealized math
ematical subject operates on a purely empirical basis, i.e. without any 
sort of categorial device in Husserl's sense. Moreover, Kitcher says that 
mathematics is concerned with structures present in physical reality.15 
One should ask Kitcher to point to a physical structure that has sorne re
semblance with, e.g. an ultraproduct, and one should urge him to con
struct such a mathematical entity on a purely empirical basis. One could 
continue arguing in this direction against Kitcher, who, e.g. says that 
arithmetic owes its truth to the structure of the world.16 For even if the 
physical world were completely different from ours, mathematical and, 
hence, also arithmetical theorems would continue to be true. 

However, we are not interested here in such more or less traditional 
arguments against empiricism. Let us assume, contrary to all available 
evidence, that mathematical empiridsts succeed in constructing all enti
ties of classical mathematics on a purely empirical basis i.e. without any 
unacknowledged non-empirical tools , and that they are capable of 
proving all theorems of classical mathematics. Even in such very im
probable case, the interderivability phenomena of seemingly unrelated 
mathematical statements would remain completely unintelligible for the 
mathematical empiricist. For surely the sense data (the physical basis or 
whatever that may be) that would serve as the empirical foundation in 
the genesis of lattices, topological spaces, vector spaces, cardinality 
spectra of models of sets of first order sentences, etc. would have to be 
very diffe rent. Moreover, the properties or relations attributed to those 
entities in the mathematically equivalent statements that we have been 
considering are very different, and since for a genuine mathematical 
empiricist they too must be empirically founded, their empirical foun
dations would also have to diverge. Hence, there is no way for (a gen
uine) mathematical empiridsm to explain the interderivability phenom-

13 See Philip Kitcher, Tbe Nature of Matbematical Knowledge, Oxford: Oxford 
University Press, 1983. 

14 !bid., p. 109. 
15 !bid., p. 107. 

16 !bid., pp. 108-109. 
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ena under discussion. They are for mathematical empiridsm as puzzling 
as for any of the other philosophies of mathematics considered above. 

It seems unnecessary to examine every sort of non-Platonist philos
ophy of mathematics with respect to the interderivability phenomena 
under discussion . In any other case one can argue essentially in the same 
way to show the inadequacy of such a philosophy of mathematics to 
assess the interderivability results of seemingly unrelated mathematical 
statements. Hence, either such mathematical results are simply incapable 
of any philosophical assessment, or we have to accept a sort of 
mathematical Platonism as the correct philosophy of mathematics. 

But there can be more than one sort of mathematical Platonism, and 
even if the second member of the former exclusive disjunction is true, 
that does not entail that any mathematical Platonism can adequately 
assess the interderivability phenomena. 

S 3 On Platonisms 

For a philosophy of mathematics to be defensible, it has to be 
complemented by an epistemology of mathematics, i.e. an explanation of 
how is it that we come to have knowledge about mathematical entities. 
Constructivist philosophies of mathematics like those of Kant and 
Brouwer seem almost inseparable from their corresponding episte
mologies. The main defect, however, of most Platonist philosophies of 
mathematics is precisely that they have not developed an accompanying 
epistemology of mathematics. Thus, even if they were to correctly assess 
the nature of mathematics and adequately resolve the riddle of mathe
matical entities, the foundational (not historical) genesis of mathematical 
knowledge would tum into a new puzzle. Of the defenders of a sort of 
Platonism in this century, only Husserl seems to have suffidently devel
oped an epistemology of mathematics.17 

However, a Platonist philosophy of mathematics not only is in need 
of an accompanying epistemology of mathematics, but presupposes a 
semantics appropriate for mathematical statements. Without an adequate 

17 See E. Husserl, op. cit. in footnote 8, Bd. II. U. VI, Kap. VI, in Husserliana, Vol. 
XIX/2, Den Haag: Nijhoff, 1984. See also our paper "Husserl's Epistemology of 
Malhematics and lhe Foundation of Platonism in Malhematics", in Husserl Studies, 4: 
81-102 (1987). A possible exception is Kurt Godel. See his "What is Cantor's Continum 
Problem?", reprinted in P. Benacerraf and H. Putnam, op. cit. in footnote 3, pp. 470-
485. 
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underlying semantics, a Platonist philosophy of mathematics does not 
seem to go much farther in explaining the interderivability phenomena 
than the philosophies of mathematics considered in §2 above. Of course, 
a semantics adequate for mathematical statements and a basically correct 
epistemology of mathematics are no complete guarantee of the 
correctness of a philosophy of mathematics, although, taken together, 
they seem to be necessary conditions both of the correctness and of the 
rational credibility of a Platonist philosophy of mathematics. 

Let us consider briefly Frege's philosophy of mathematics. As is well 
known, Frege defended both a Platonist and a logicist conception of 
mathematics ewith the exclusion of geometry)-which should be clearly 
separated from each other. Thus, he not only conceived mathematical 
entities, e.g. numbers, and logical entities, e.g. thoughts, 18 as having an 
objective but not spatiotemporally bound existence ePlatonism), but he 
also believed that arithmetical concepts could be defined by means of 
logical concepts, and arithmetical theorems derived-ultimately- from 
logical axioms (logicism). Moreover, Frege also developed a theory of 
reference, according to which statements eLe. assertive sentences)
whether mathematical or not-, when standing alone or in extensional 
contexts, refer to a truth value, namely, to the true o r to the false. Por 
Frege, the true and the false are not only the referents of all statements, 
but also in sorne sense the foremost Platonic entities.19 Frege does not 
acknowledge the existence of states of affairs, and for him all true state
ments have the same reference, namely, the true. Thus, for Frege, the 
statements (1) 'Paris is the capital of France', e2) '2 + 2 = 4'. (3) 'Every set 
can be well-ordered', and e 4) 'The product of any family of compact 
topological spaces is a compact topological space', although they seem 
to speak about very different things, have the same reference, namely, 
the true. Apart from the fact that statements e2), (3) and e 4) seem to be 
true in all possible worlds, whereas (1) does not, e3) and e 4) are mathe
matically equivalent and are mathematically equivalent neither with (1) 
nor with e2), nor is (1) mathematically equivalent with e2). Frege's se
mantics ignores all of this and also runs counter to our intuitions that 
statements en-e 4) not only express very different thoughts, but also 

18 See, e .g. "Der Gedanke'" 1918, in Gottlob Frege, Kleine Schriften, edited by l. 
Angelelli, Darrnstadt: Wissenschaftliche Buchgesellschaft, 1967, pp. 342-362. 

19 See Prege's Grundgesetze der Aritbmetik, Bd. 1, 1893; Hildesheim: Georg Olrns, 
1962, § 10. 
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speak about very different things . Hence , Frege's semantics seems inap
propriate for mathematics and, particularly, does not adequately assess 
the interderivability phenomena of seemingly unrelated mathemalical 
statements, since it does not do justice to the fact that statements (3) and 
(4) above are interderivable, but are interderivable neither with (1) nor 
with (2) , nor is (1) interderivable with (2). 

The first ste p for building a semantics of mathematics that can ade
quately assess the interderivability of seemingly unrelated mathematical 
statements consists in taking states of affairs as the referents o f state
ments .20 The statements '3 + 4 "" T and '6 + 1 = T express different 
thoughts, but re fer to the same state of affai rs , and the statements (1) 
'Every filler on a set can be extended to an ultrafi lter' and (2) 'Every dual 
ideal on a set can be extended to a maximal dual ideal' a lso seem to ex
press different thoughts- if 'filter' is not introduced into the theory as an 
abbreviation of 'dual ideal'-, but refer to the same state of affairs, 
namely, to the mathematical fact that an en tity with the properties of a 
fil ter can be extended Lo (i.e. is contained in) a ftlte r which is maximal in 
the sense of no t being prope rly contained in any other filter. Moreover, 
this state o f affairs is clearJy different from that referred to by the equa
tions '3 + 4 = 7' and '6 + 1 = 7', although all four statements are true. 

But to acknow lcdge states of affairs as the refe rence of statements is 
clearly not enough, sin ce predsely in each of the two lists o f mathemati
cally equivalcnt statements of §1 , the statements, although interderivable, 
speak about vcry di fferent things and, thus, refer to very different states 
of affairs. On the other hand, since all statements in both Hsts have the 
same truth value as the statements 'Paris is the capital of France' and 
'Frege died in 1925' , namely, the true, to adequately assess the interderiv
ability of scemingly unrelated mathematical statements, a semantics ap
propriate fo r mathc matics has to postulate the existence of abstract en
tilies inte rmediate bctween states of affairs and truth values. Thus, we 
will spe ak of abstract situations of affairs, and will say that the statements 
in each of the two lists o f mathematically equivalent statements of §1 
have the same ab trac t situation of affairs as their reference basis, 
although the states of affairs referred to by them are clearly different. 
More simple examples of pairs of mathematical statements referring to 

20 Compare lhe rest of rhis § wilh our paper "On Frege's Two Notions of Sense", in 
History a.nd Ph ilosophy of l.ogic, 7: 31-41 (1986). See also our "Remarks on Sense and 
Refe rence in Frege and Husserl ", in Kantstudien, 73: 425-439 (1982). 
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different states of affairs but having the same abstract situation of affairs 
as reference basis are the somewhat trivial pair of inequalities. 'S > 3' and 
'3 < 5' , and pairs of dual statements as, e.g. the pair (1) 'Every filter on a 
set can be extended to an ultrafilter' and (2) 'Every ideaJ on a set can be 
extended to a maximal ideal' . (That "abstract situations of affairs" are 
really "abstract'' can be easily admitted if we try to apprehend them 
intuitively even in the latter more elementary examples considered 
above.) 

On the other hand, the statements 'París is the capital of France', 
'Frege died in 1925' and '2 + 2 = 4' have very different abstract situations 
of affairs as their reference bases, and all these reference bases differ 
both from the common abstract situation of affairs of, e .g. the Axiom of 
Choice and Tychonoffs Theorem, and from the common abstract situa
tion of affairs of, e.g. the Ultrafilter Theorem and the Compactness 
Theorem. Thus, a semantics for mathematical statements that can offer an 
appropriate assessment of mathematical equivalence must include the 
following schema (where the arrows represent functions) : 

Statement 

Thought (or Proposition) 

S tate of Affairs ( = Reference of Statements) 

Abstract Situation of Affairs ( = Reference Basis of Statements) 

Truth Value 

This semantics for statements is essentially a reconstruction of 
Husserl's, as is the distinction-and the terminology-between state of 
affairs (Sacbverbalt) and situation of affairs (Sacblage) . 21 This distinction 
remains in Husserl's writings somewhat sketchy, and since we are using 

21 E, Husserl, op. cit in footnote 8, Bd II, U. VI, S 48 and especiaUy Eifabrung und 
Urteil, 1939. ftfth revised edition. Hamburg: Meiner, 1976, SS 58-65. 
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it exclusively for mathematical contexts, for which the disUnction is much 
clearer and can be made much more precise than for non-mathematical 
ones, we ha ve added the adjective 'abstract' to 'situation of affairs' not so 
much to emphasize its abstract character-which is present even in non
mathematical contexts 22, as to underscore that the notion of abstract 
situation of affairs that we have introduced here for a purpose not 
explidtly envisaged by Husserl, should be regarded more as a sort of 
explanans of Husserl 's notion of situation of affairs than as exactly the 
same notion. On the other hand, since Husserl also developed an epis
temology of mathematics, combining it with the neo-Husserlian seman
tics of mathematics just sketched, ít seems possible to defend mathe
matical Platonism along neo-Husserlian lines. 

Finally, it seems interesting to examine the semantics of mathematical 
statements propounded in this paper from the point of view of the in
formation conveyed. As is well known, Frege begins and ends his fa
mous 'Über Sinn und Bedeutung' with a discussion of identity state
ments. 23 In particular, he is interested in explaining how is it that an 
identity statement of the form ' a = b', when true no matter whether 
synthetically or analytically-, can have a greater cognitive value and, 
thus, be more informative, than an identity statement of the form 'a = a' . 

The identity statements '117 = 117' and '117 = 9 x 13' are both true iden
tity statements and, according to Frege, analytically true, but the second 
is much more informative than the first. To explain this s ituation, Frege 

introduces the notion of sense. '117' and '9 x 13' have the same refer
ence, namely, the number 117, but their senses are different and, thus, 

the senses of the identity s tatements '117 = 117' and '117 = 9 x 13' are 
different.24 Thus, if in a mathematical (or non-mathematical) statement, 
standing alone or in an extensional context, we substitute a proper name 
(in its wide Fregean meaning) for another proper name with a different 
sense but with the same reference, the truth value of the statement re
mains the same but its cognitive value can change. 

22 See e.g. Logiscbe Untersucbungen, Bd. TI, U. VI, S 48. See also our paper cited in 
footnote 20. 

23 'Über Sinn und Bedeutung', 1982, in Kleine Scbriften, pp. 143-162. See also our 
'Identity Statements in the Semantics of Sense and Reference', in Logique et Anaryse, 25: 
399-411 0982). 

24 It is not clear what the sense of the expression '117' actually is. We can assume, 
for simplicity's sake, that it is the same as that of the expression '116 + 1'. In any case, it 
seems to be clearly different from that of the expression '9 x 13'. 
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However, a mathematical statement conveys information not only at 
the level of senses, but also at the level of states of affairs. Mathematical 
(and non-mathematical) statements refer to states of affairs, and when 
someone learns to what state of affairs does a mathematical statement re
fer,· he obtains sorne information. When a mathematical statement asserts 
that a mathematical entity, e.g. an ultraproduct ora Hausdorff space, has 
a definite property, it conveys (a non-trivial) information, based on an 
understanding of the referents of the constituents of the statement, 
namely, ultraproducts, Hausdorff spaces, etc. 

Moreover, at the level of abstract situations of affairs there seems to 
lie a deeper, more intangible and probably less universaJ2S level of in
fonnation which has a strong metamathematical flavor.26 When someone 
grasps a statement that speaks about the interderivability of two seem
ingly unrelated mathematical statements, a certain infonnation is con
veyed to him, an information at a level which builds a sort of 'deep 
structure• of mathematics. 

Untverstdad de Puerto Rtco 

25 Interderivability phenomena like those considered in th.is paper seem to be 
rather isolated phenomena. That for any mathematical statement, there are other 
mathematical statements that refer to different states of affairs but are mathematically 
equivalent to it, seems improbable and, in any case, would have to be proved. 

26 It should be clear from the very beginning of this paper that the interderivability 
results have a metamathematical character. We have not emphasized this point to avoid 
somewhat esoteric terminology that could originate unnecessary confusion. 
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